Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering

Bondy-Denomy, J., Pawluk, A., Maxwell, K. L., & Davidson, A. R. (2013). Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493, 429–432.

Article  CAS  PubMed  Google Scholar 

Brooks, K., & Clark, A. J. (1967). Behavior of λ bacteriophage in a recombination deficient strain of Escherichia coli. Journal of Virology, 1, 283–293.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caldwell, B. J., & Bell, C. E. (2019). Structure and mechanism of the Red recombination system of bacteriophage λ. Progress in Biophysics and Molecular Biology, 147, 33–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrol, D. (2014). Genome engineering with targetable nucleases. Annual Review of Biochemistry, 83, 409–439.

Article  Google Scholar 

Choi, K. H., Gaynor, J. B., White, K. G., Lopez, C., Bosio, C. M., Karkhoff-Schweizer, R. R., & Schweizer, H. P. (2005). A Tn7-based broad-range bacterial cloning and expression system. Nature Methods, 2, 443–448.

Article  CAS  PubMed  Google Scholar 

Choi, K. H., Kumar, A., & Schweizer, H. P. (2006). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. Journal of Microbiological Methods, 64, 391–397.

Article  CAS  PubMed  Google Scholar 

Chung, I. Y., & Cho, Y. H. (2012). Complete genome sequences of two Pseudomonas aeruginosa temperate phages, MP29 and MP42, which lack the phage-host CRISPR interaction. Journal of Virology, 86, 8336–8336.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, I. Y., Sim, N., & Cho, Y. H. (2012). Antibacterial efficacy of temperate phage-mediated inhibition of bacterial group motilities. Antimicrobial Agents and Chemotherapy, 56, 5612–5617.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166, 30–33.

Article  CAS  PubMed  Google Scholar 

Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, USA, 109, 2579–2586.

Article  Google Scholar 

Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173.

Article  CAS  PubMed  Google Scholar 

Goodridge, L. (2010). Designing phage therapeutics. Current Pharmaceutical Biotechnology, 11, 15–27.

Article  CAS  PubMed  Google Scholar 

Heo, Y. J., Chung, I. Y., Choi, K. B., & Cho, Y. H. (2007a). R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. Journal of Microbiology and Biotechnology, 17, 180–185.

CAS  PubMed  Google Scholar 

Heo, Y. J., Chung, I. Y., Choi, K. B., Lau, G. W., & Cho, Y. H. (2007b). Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology, 153, 2885–2895.

Article  CAS  PubMed  Google Scholar 

Heo, Y. J., Lee, Y. R., Jung, H. H., Lee, J., Ko, G., & Cho, Y. H. (2009). Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrobial Agents and Chemotherapy, 53, 2469–2474.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233–239.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, M. C., Laderman, E., Huiting, E., Zhang, C., Davidson, A., & Bondy-Denomy, J. (2023). Core defense hotspots within Pseudomonas aeruginosa are a consistent and rich source of anti-phage defense systems. Nucleic Acids Research, 51, 4995–5005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karimi, M., Mirshekari, H., Moosavi Basri, M., Bahrami, S., Moghoofei, M., & Hamblin, M. R. (2016). Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Advanced Drug Delivery Reviews, 106, 45–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, E. S., Lee, J. Y., Park, C., Ahn, S. J., Bae, H. W., & Cho, Y. H. (2021). cDNA-derived RNA phage assembly reveals critical residues in the maturation protein of the Pseudomonas aeruginosa leviphage PP7. Journal of Virology, 95, e01643-20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 47, W171–W174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8, 2180–2196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H. J., Kim, H. J., & Lee, S. J. (2022). Control of λ lysogenic Escherichia coli cells by synthetic λ phage carrying cIantisense. ACS Synthetic Biology, 11, 3829–3835.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemay, M. L., Tremblay, D. M., & Moineau, S. (2017). Genome engineering of virulent lactococcal phages using CRISPR-Cas9. ACS Synthetic Biology, 6, 1351–1358.

Article  CAS  PubMed  Google Scholar 

Lesic, B., & Rahme, L. G. (2008). Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Molecular Biology, 9, 20.

Article  PubMed  PubMed Central  Google Scholar 

Mosberg, J. A., Lajoie, M. J., & Church, G. M. (2010). Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 186, 791–799.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, K. C. (2016). λ recombination and recombineering. EcoSal Plus, 7. DOI: https://doi.org/10.1128/ecosalplus.ESP-0011-2015.

Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79–88.

Article  PubMed  Google Scholar 

Pyne, M. E., Moo-Young, M., Chung, D. A., & Chou, C. P. (2015). Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and Environmental Microbiology, 81, 5103–5114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7, 199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8, 2281–2308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romero-Calle, D. X., Guimarães Benevides, R., Góes-Neto, A., & Billington, C. (2019). Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics, 8, 138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serra-Moreno, R., Acosta, S., Hernalsteens, J. P., Jofre, J., & Muniesa, M. (2006). Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Molecular Biology, 7, 31.

Article  PubMed  PubMed Central  Google Scholar 

Shah, M., Taylor, V. L., Bona, D., Tsao, Y., Stanley, S. Y., Pimentel-Elardo, S. M., McCallum, M., Bondy-Denomy, J., Howell, P. L., Nodwell, J. R., et al. (2021). A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Molecular Cell, 81, 571–583.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif