Isoniazid is a first-line drug used to treat tuberculosis. However, its excessive use can lead to serious adverse effects. Thus, strict monitoring of the isoniazid levels in medications and human systems is required. In this study, a new polymer (AlPc-TB POP) containing metal phthalocyanine and Tröger’s base was synthesized and explored as an electrocatalyst for the oxidation of isoniazid. The results indicated that the polymer is an excellent electron-transfer medium for isoniazid oxidation. The AlPc-TB POP-based sensor quantified isoniazid in the linear range of 0.1-130 μM, with a detection limit of 0.0185 μM. The response of the developed sensor to isoniazid was reproducible and stable. Furthermore, this method can accurately determine isoniazid levels by ignoring the influence of common interfering species in tablets and biological samples. This study contributes to the development of nitrogen-rich porous organic polymers and offers a novel strategy for addressing challenges in disease therapeutic efficacy and public safety monitoring.
You have access to this article
Please wait while we load your content... Something went wrong. Try again?
留言 (0)