Bagade S, Patil D, Shirkhedkar A (2022) Chapter 14: Standardization of herbal bioactives. In: Bakshi IS, Madaan R, Bala R, Sindhu RK (eds) Herbal bioactive-based drug delivery systems. Academic Press, Cambridge, pp 393–407
Muqarrabun A, Ahmat N, Ruzaina S, Ismail N, Sahidin I (2013) Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review. J Ethnopharmacol 150:395–420. https://doi.org/10.1016/j.jep.2013.08.041
Article CAS PubMed Google Scholar
Elakkiya V, Krishnan K, Bhattacharyya A, Selvakumar R (2020) Advances in Ayurvedic medicinal plants and nanocarriers for arthritis treatment and management: a review. J Herb Med 24:100412. https://doi.org/10.1016/j.hermed.2020.100412
Sharma A, Kaushik N, Rathore H (2020) Karanja (Milletia pinnata (L.) Panigrahi): a tropical tree with varied applications. Phytochem Rev 19:643–658. https://doi.org/10.1007/s11101-020-09670-z
Pulipati S, Babu P, Sampath R, Sree N (2016) Antimicrobial efficacy of Pongamia pinnata (L.) Pierre against dental caries pathogens of clinical origin. Indo Am J Pharm Sci 2016:546–551
Dwivedi D, Dwivedi M, Malviya S, Singh V (2017) Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J Tradit Complement Med 7:79–85. https://doi.org/10.1016/j.jtcme.2015.12.002
Pisoschi AM, Pop A, Cimpeanu C, Predoi G (2016) Antioxidant capacity determination in plants and plant-derived products: a review. Oxid Med Cell Longev 2016:9130976. https://doi.org/10.1155/2016/9130976
Article CAS PubMed PubMed Central Google Scholar
Vadivel V, Biesalski HK (2011) Contribution of phenolic compounds to the antioxidant potential and type II diabetes related enzyme inhibition properties of Pongamia pinnata L. Pierre seeds. Process Biochem 46:1973–1980. https://doi.org/10.1016/j.procbio.2011.07.007
Badole SL, Zanwar AA, Ghule AE, Ghosh P, Bodhankar SL (2012) Analgesic and anti-inflammatory activity of alcoholic extract of stem bark of Pongamia pinnata (L.) Pierre. Biomed Aging Pathol 2:19–23. https://doi.org/10.1016/j.biomag.2011.11.001
Guo H, Bai Z, Xu Y, Wu X, Li N, Zhu Y, Wang X, Zhang P (2017) Anti-inflammation compounds from the seedpods of Pongamia pinnata (L.) Pierre guided by the bioactivity and UPLC-HRESIMS. Arch Pharm Res 40:818–824. https://doi.org/10.1007/s12272-017-0913-2
Article CAS PubMed Google Scholar
Rekha MJ, Bettadaiah BK, Sindhu Kanya TC, Govindaraju K (2020) A feasible method for isolation of pongamol from karanja (Pongamia pinnata) seed and its anti-inflammatory activity. Ind Crops Prod 154:112720. https://doi.org/10.1016/j.indcrop.2020.112720
Wen R, Lv H, Jiang Y, Tu P (2018) Anti-inflammatory isoflavones and isoflavanones from the roots of Pongamia pinnata (L.) Pierre. Bioorganic Med Chem Lett 28:1050–1055. https://doi.org/10.1016/j.bmcl.2018.02.026
Punitha R, Manoharan S (2006) Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J Ethnopharmacol 105:39–46. https://doi.org/10.1016/j.jep.2005.09.037
Article CAS PubMed Google Scholar
Vismaya BSM, Rajashekhar S, Jayaram VB, Dharmesh SM, Thirumakudalu SKC (2011) Gastroprotective properties of karanjin from karanja (Pongamia pinnata) seeds; role as antioxidant and H+, K+-ATPase inhibitor. Evid based Complement Altern Med 2011:1–10. https://doi.org/10.1093/ecam/neq027
Kolli GR, Balakrishnan V, Sundararajan R (2013) Evaluation of larvicidal activity of Pongamia pinnata extracts against three mosquito vectors. Asian Pac J Trop Biomed 3:853–858. https://doi.org/10.1016/S2221-1691(13)60168-9
Article CAS PubMed Central Google Scholar
Perumalsamy H, Jang MJ, Kim J-R, Kadarkarai M, Ahn Y-J (2015) Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit Vectors 8:237. https://doi.org/10.1186/s13071-015-0848-8
Article CAS PubMed PubMed Central Google Scholar
Srinivasan K, Muruganandan S, Lal J, Chandra S, Tandan SK, Raviprakash V, Kumar D (2003) Antinociceptive and antipyretic activities of Pongamia pinnata leaves. Phytother Res 17:259–264. https://doi.org/10.1002/ptr.1126
Article CAS PubMed Google Scholar
Dwivedi PSR, Shastry CS (2023) Anti-tumor potential and mode of action of karanjin against breast cancer; an in-silico approach. Arab J Chem 16:104778. https://doi.org/10.1016/j.arabjc.2023.104778
Katekhaye S, Kale MS, Laddha KS (2012) Development and validation of an HPLC method for karanjin in Pongamia pinnata linn. Leaves Indian J Pharm Sci 74:72–75. https://doi.org/10.4103/0250-474X.102547
Article CAS PubMed Google Scholar
Gore VK, Satyamoorthy P (2000) Determination of Pongamol and karanjin in karanja oil by reverse phase HPLC. Anal Lett 33:337–346. https://doi.org/10.1080/00032710008543056
Ravikanth K, Thakur M, Singh B, Saxena M (2009) TLC based method for standardization of Pongamia pinnata (Karanj) using karanjin as marker. Chromatographia 69:597–599. https://doi.org/10.1365/s10337-008-0922-x
Kamurthy H, Viddae J, Dontha S, Rao NS, Nampally S (2014) Phytochemical screening on mussaenda philipica sepals—isolation of iridoid glycosides and flavones. JPC-J Planar Chromat-Mod TLC 27:93–96. https://doi.org/10.1556/JPC.27.2014.2.4
Shaikh JR, Patil MK (2020) Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud 8:603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
Thummar K, Tilva K, Dudhatra B, Mardia R, Sheth N (2020) Validated stability-indicating HPTLC method for the estimation of adapalene in drugs and the LC–MS identification of its degradation products. JPC-J Planar Chromat-Mod TLC 33:371–380. https://doi.org/10.1007/s00764-020-00042-z
留言 (0)