Gould MK, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14. https://doi.org/10.1164/rccm.201505-0990OC.
Pritchett MA, Bhadra K, Calcutt M, Folch E. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J Thorac Dis. 2020;12(4). https://doi.org/10.21037/jtd.2020.01.35.
• Sagar A-ES, et al. Incidence and location of atelectasis developed during bronchoscopy under general anesthesia. Chest. 2020;158(6):2658–66. https://doi.org/10.1016/j.chest.2020.05.565. Important paper cleverly evaluating the development of atelectasis with radial probe endobronchial ultrasound during bronchoscopy under general anesthesia.
Article PubMed PubMed Central Google Scholar
•• Pritchett MA, Schampaert S, de Groot JAH, Schirmer CC, van der Bom I. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. J Bronchol Interv Pulmonol. 2018;25(4):274–82. https://doi.org/10.1097/LBR.0000000000000536. Seminal study evaluating the impact of cone-beam CT with electromagnetic navigation.
Casal RF, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis. 2018;10(12). https://doi.org/10.21037/jtd.2018.11.21.
Avasarala SK, Machuzak MS, Gildea TR. Multidimensional precision: hybrid mobile 2D/3D C-arm assisted biopsy of peripheral lung nodules. J Bronchol Interv Pulmonol. 2020;27(2):153. https://doi.org/10.1097/LBR.0000000000000650.
Hürter T, Hanrath P. Endobronchial sonography: feasibility and preliminary results. Thorax. 1992;47(7):565–7. https://doi.org/10.1136/thx.47.7.565.
Article PubMed PubMed Central Google Scholar
Ali MS, Trick W, Mba BI, Mohananey D, Sethi J, Musani AI. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis. Respirology. 2017;22(3):443–53. https://doi.org/10.1111/resp.12980.
Yarmus LB, et al. First-in-human use of a hybrid real-time ultrasound-guided fine-needle acquisition system for peripheral pulmonary lesions: a multicenter pilot study. Respiration. 2019;98(6):527–33. https://doi.org/10.1159/000504025.
Dobbins JT, McAdams HP. Chest tomosynthesis: technical principles and clinical update. Eur J Radiol. 2009;72(2):244–51. https://doi.org/10.1016/j.ejrad.2009.05.054.
Article PubMed PubMed Central Google Scholar
Aboudara M, et al. Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: initial experience with a novel adjunct. Respirology. 2020;25(2):206–13. https://doi.org/10.1111/resp.13609.
Katsis J, et al. Diagnostic yield of digital tomosynthesis-assisted navigational bronchoscopy for indeterminate lung nodules. J Bronchol Interv Pulmonol. 2021;28(4):255. https://doi.org/10.1097/LBR.0000000000000766.
Avasarala SK, et al. Sight unseen: diagnostic yield and safety outcomes of a novel multimodality navigation bronchoscopy platform with real-time target acquisition. Respiration. 2021;101(2):166–73. https://doi.org/10.1159/000518009.
Pritchett MA, Bhadra K, Mattingley JS. Electromagnetic navigation bronchoscopy with tomosynthesis-based visualization and positional correction: three-dimensional accuracy as confirmed by cone-beam computed tomography. J Bronchol Interv Pulmonol. 2021;28(1):10. https://doi.org/10.1097/LBR.0000000000000687.
Katsis J, et al. High accuracy of digital tomosynthesis-guided bronchoscopic biopsy confirmed by intraprocedural computed tomography. Respiration. 2021;100(3):214–21. https://doi.org/10.1159/000512802.
• Low S-W, et al. Shape-sensing robotic-assisted bronchoscopy vs digital tomosynthesis-corrected electromagnetic navigation bronchoscopy: a comparative cohort study of diagnostic performance. Chest. 2023;163(4):977–84. https://doi.org/10.1016/j.chest.2022.10.019. Single center, retrospective study demonstrating comparable diagnostic yield between shape-sensing robotic-assisted bronchoscopy with 2-dimensional fluroscopy and electromagnetic navigation bronchoscopy with digital tomography.
Cicenia J, Bhadra K, Sethi S, Nader DA, Whitten P, Hogarth DK. Augmented fluoroscopy: a new and novel navigation platform for peripheral bronchoscopy. J Bronchol Interv Pulmonol. 2021;28(2):116. https://doi.org/10.1097/LBR.0000000000000722.
Pritchett MA. Prospective analysis of a novel endobronchial augmented fluoroscopic navigation system for diagnosis of peripheral pulmonary lesions. J Bronchol Interv Pulmonol. 2021;28(2):107–15. https://doi.org/10.1097/LBR.0000000000000700.
Hedstrom G, Wagh AA. Combining real-time 3-D imaging and augmented fluoroscopy with robotic bronchoscopy for the diagnosis of peripheral lung nodules. Chest. 2022;162(4):A2082. https://doi.org/10.1016/j.chest.2022.08.1720.
Folch EE, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 2019;14(3): 445–458. https://doi.org/10.1016/j.jtho.2018.11.013.
Nadig TR, et al. Guided bronchoscopy for the evaluation of pulmonary lesions: an updated meta-analysis. Chest. 2023;163(6):1589–98. https://doi.org/10.1016/j.chest.2022.12.044.
Pertzov B, et al. The LungVision navigational platform for peripheral lung nodule biopsy and the added value of cryobiopsy. Thorac Cancer. 2021;12(13):2007–12. https://doi.org/10.1111/1759-7714.14003.
Article PubMed PubMed Central Google Scholar
• Oberg CL, et al. Novel robotic-assisted cryobiopsy for peripheral pulmonary lesions. Lung. 2022;200(6):737–45. https://doi.org/10.1007/s00408-022-00578-3. Single center study evaluating the impact of addition of cryoprobe to biopsy peripheral pulmonary lesions.
Article PubMed PubMed Central Google Scholar
• Bhadra K, Setser RM, Condra W, Bader BA, David S. A cone beam CT bronchoscopy study of the ultrathin cryoprobe for biopsy of peripheral lung lesions. J Bronchol Interv Pulmonol. 2023. https://doi.org/10.1097/LBR.0000000000000936. Single center study evaluating the impact of addition of cryoprobe to biopsy peripheral pulmonary lesions.
Bhadra K, Rickman OB, Mahajan AK, Hogarth DK. ‘Tool-in-lesion’ accuracy of galaxy system-a robotic electromagnetic navigation bronchoscopy with integrated tool-in-lesion-tomosynthesis technology: the MATCH study. J Bronchol Interv Pulmonol. 2023. https://doi.org/10.1097/LBR.0000000000000923.
Chan JWY, Lau RWH, Chu CM, Ng CSH. Expanding the scope of electromagnetic navigation bronchoscopy-guided transbronchial biopsy and ablation with mobile 3D C-arm machine Cios Spin ®—feasibility and challenges. Transl. Lung Cancer Res. 2021;10(10). https://doi.org/10.21037/tlcr-21-619.
Kalchiem-Dekel O, et al. Multiplanar 3D fluoroscopy redefines tool–lesion relationship during robotic-assisted bronchoscopy. Respirology. 2021;26(1):120–3. https://doi.org/10.1111/resp.13966.
Reisenauer J, Duke JD, Kern R, Fernandez-Bussy S, Edell E. Combining shape-sensing robotic bronchoscopy with mobile three-dimensional imaging to verify tool-in-lesion and overcome divergence: a pilot study. Mayo Clin Proc Innov Qual Outcomes. 2022;6(3):177–85. https://doi.org/10.1016/j.mayocpiqo.2022.02.004.
Article PubMed PubMed Central Google Scholar
Salahuddin M, Bashour SI, Khan A, Chintalapani G, Kleinszig G, Casal RF. Mobile cone-beam CT-assisted bronchoscopy for peripheral lung lesions. Diagnostics. 2023;13(5). https://doi.org/10.3390/diagnostics13050827.
Cho RJ, Senitko M, Wong J, Dincer EH, Khosravi H, Abraham GEI. Feasibility of using the O-arm imaging system during ENB-rEBUS–guided peripheral lung biopsy: a dual-center experience. J Bronchol Interv Pulmonol. 2021;28(4):248. https://doi.org/10.1097/LBR.0000000000000738.
Chambers J, Knox D, Leclair T. O-arm CT for confirmation of successful navigation during robotic assisted bronchoscopy. J Bronchol Interv Pulmonol. 2023;30(2):155. https://doi.org/10.1097/LBR.0000000000000894.
Cheng GZ, Liu L, Nobari M, Miller R, Wahidi M. Cone beam navigation bronchoscopy: the next frontier. J Thorac Dis. 2020;12(6). https://doi.org/10.21037/jtd.2020.03.85.
Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: a technical review. J Thorac Dis. 2020;12(12):7416–28. https://doi.org/10.21037/jtd-20-2382.
Article PubMed PubMed Central Google Scholar
Casal RF, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis. 2018;10(12):6950–9. https://doi.org/10.21037/jtd.2018.11.21.
Article PubMed PubMed Central Google Scholar
Ali EAA, et al. Transbronchial biopsy using an ultrathin bronchoscope guided by cone-beam computed tomography and virtual bronchoscopic navigation in the diagnosis of pulmonary nodules. Respir Int Rev Thorac Dis. 2019;98(4):321–8. https://doi.org/10.1159/000500228.
Yu K-L, et al. Efficacy and safety of cone-beam computed tomography-derived augmented fluoroscopy combined with endobronchial ultrasound in peripheral pulmonary lesions. Respir Int Rev Thorac Dis. 2021;100(6):538–46. https://doi.org/10.1159/000515181.
• Verhoeven RLJ, Fütterer JJ, Hoefsloot W, van der Heijden EHFM. Cone-beam CT image guidance with and without electromagnetic navigation bronchoscopy for biopsy of peripheral pulmonary lesions. J Bronchol Interv Pulmonol. 2021;28(1):60. https://doi.org/10.1097/LBR.0000000000000697. Single center randomized controlled trial with a cross-over design comparing an imaging based guided approach with cone-beam CT to an electromagnetic navigation based approach.
Bondue B, Taton O, Tannouri F, Van de Velde N, Remmelink M, Leduc D. High diagnostic yield of electromagnetic navigation bronchoscopy performed under cone beam CT guidance: results of a randomized Belgian monocentric study. BMC Pulm Med. 2023;23(1):185. https://doi.org/10.1186/s12890-023-02492-7.
Article PubMed PubMed Central Google Scholar
Styrvoky K, et al. Shape-sensing robotic-assisted bronchoscopy with concurrent use of radial endobronchial ultrasound and cone beam computed tomography in the evaluation of pulmonary lesions. Lung. 2022;200(6):755–61. https://doi.org/10.1007/s00408-022-00590-7.
Cumbo-Nacheli G, Velagapudi RK, Enter M, Egan JPI, Conci D. Robotic-assisted bronchoscopy and cone-beam CT: a retrospective series. J Bronchol Interv Pulmonol. 2022;29(4):303. https://doi.org/10.1097/LBR.0000000000000860.
Zeng C, et al. Application of electromagnetic navigation bronchoscopy-guided microwave ablation in multiple pulmonary nodules: a single-centre study. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2022;62(40): ezac071. https://doi.org/10.1093/ejcts/ezac071.
Chang JY, et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncol. 2021;22(10):1448–57. https://doi.org/10.1016/S1470-2045(21)00401-0.
留言 (0)