Advanced Imaging Techniques to Facilitate Bronchoscopic Sampling of Peripheral Pulmonary Lesions

Gould MK, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14. https://doi.org/10.1164/rccm.201505-0990OC.

Article  PubMed  Google Scholar 

Pritchett MA, Bhadra K, Calcutt M, Folch E. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J Thorac Dis. 2020;12(4). https://doi.org/10.21037/jtd.2020.01.35.

• Sagar A-ES, et al. Incidence and location of atelectasis developed during bronchoscopy under general anesthesia. Chest. 2020;158(6):2658–66. https://doi.org/10.1016/j.chest.2020.05.565. Important paper cleverly evaluating the development of atelectasis with radial probe endobronchial ultrasound during bronchoscopy under general anesthesia.

Article  PubMed  PubMed Central  Google Scholar 

•• Pritchett MA, Schampaert S, de Groot JAH, Schirmer CC, van der Bom I. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. J Bronchol Interv Pulmonol. 2018;25(4):274–82. https://doi.org/10.1097/LBR.0000000000000536. Seminal study evaluating the impact of cone-beam CT with electromagnetic navigation.

Article  Google Scholar 

Casal RF, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis. 2018;10(12). https://doi.org/10.21037/jtd.2018.11.21.

Avasarala SK, Machuzak MS, Gildea TR. Multidimensional precision: hybrid mobile 2D/3D C-arm assisted biopsy of peripheral lung nodules. J Bronchol Interv Pulmonol. 2020;27(2):153. https://doi.org/10.1097/LBR.0000000000000650.

Article  Google Scholar 

Hürter T, Hanrath P. Endobronchial sonography: feasibility and preliminary results. Thorax. 1992;47(7):565–7. https://doi.org/10.1136/thx.47.7.565.

Article  PubMed  PubMed Central  Google Scholar 

Ali MS, Trick W, Mba BI, Mohananey D, Sethi J, Musani AI. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis. Respirology. 2017;22(3):443–53. https://doi.org/10.1111/resp.12980.

Article  PubMed  Google Scholar 

Yarmus LB, et al. First-in-human use of a hybrid real-time ultrasound-guided fine-needle acquisition system for peripheral pulmonary lesions: a multicenter pilot study. Respiration. 2019;98(6):527–33. https://doi.org/10.1159/000504025.

Article  PubMed  Google Scholar 

Dobbins JT, McAdams HP. Chest tomosynthesis: technical principles and clinical update. Eur J Radiol. 2009;72(2):244–51. https://doi.org/10.1016/j.ejrad.2009.05.054.

Article  PubMed  PubMed Central  Google Scholar 

Aboudara M, et al. Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: initial experience with a novel adjunct. Respirology. 2020;25(2):206–13. https://doi.org/10.1111/resp.13609.

Article  PubMed  Google Scholar 

Katsis J, et al. Diagnostic yield of digital tomosynthesis-assisted navigational bronchoscopy for indeterminate lung nodules. J Bronchol Interv Pulmonol. 2021;28(4):255. https://doi.org/10.1097/LBR.0000000000000766.

Article  Google Scholar 

Avasarala SK, et al. Sight unseen: diagnostic yield and safety outcomes of a novel multimodality navigation bronchoscopy platform with real-time target acquisition. Respiration. 2021;101(2):166–73. https://doi.org/10.1159/000518009.

Article  PubMed  Google Scholar 

Pritchett MA, Bhadra K, Mattingley JS. Electromagnetic navigation bronchoscopy with tomosynthesis-based visualization and positional correction: three-dimensional accuracy as confirmed by cone-beam computed tomography. J Bronchol Interv Pulmonol. 2021;28(1):10. https://doi.org/10.1097/LBR.0000000000000687.

Article  Google Scholar 

Katsis J, et al. High accuracy of digital tomosynthesis-guided bronchoscopic biopsy confirmed by intraprocedural computed tomography. Respiration. 2021;100(3):214–21. https://doi.org/10.1159/000512802.

Article  Google Scholar 

• Low S-W, et al. Shape-sensing robotic-assisted bronchoscopy vs digital tomosynthesis-corrected electromagnetic navigation bronchoscopy: a comparative cohort study of diagnostic performance. Chest. 2023;163(4):977–84. https://doi.org/10.1016/j.chest.2022.10.019. Single center, retrospective study demonstrating comparable diagnostic yield between shape-sensing robotic-assisted bronchoscopy with 2-dimensional fluroscopy and electromagnetic navigation bronchoscopy with digital tomography.

Article  PubMed  Google Scholar 

Cicenia J, Bhadra K, Sethi S, Nader DA, Whitten P, Hogarth DK. Augmented fluoroscopy: a new and novel navigation platform for peripheral bronchoscopy. J Bronchol Interv Pulmonol. 2021;28(2):116. https://doi.org/10.1097/LBR.0000000000000722.

Article  Google Scholar 

Pritchett MA. Prospective analysis of a novel endobronchial augmented fluoroscopic navigation system for diagnosis of peripheral pulmonary lesions. J Bronchol Interv Pulmonol. 2021;28(2):107–15. https://doi.org/10.1097/LBR.0000000000000700.

Article  Google Scholar 

Hedstrom G, Wagh AA. Combining real-time 3-D imaging and augmented fluoroscopy with robotic bronchoscopy for the diagnosis of peripheral lung nodules. Chest. 2022;162(4):A2082. https://doi.org/10.1016/j.chest.2022.08.1720.

Article  Google Scholar 

Folch EE, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 2019;14(3): 445–458. https://doi.org/10.1016/j.jtho.2018.11.013.

Nadig TR, et al. Guided bronchoscopy for the evaluation of pulmonary lesions: an updated meta-analysis. Chest. 2023;163(6):1589–98. https://doi.org/10.1016/j.chest.2022.12.044.

Article  PubMed  Google Scholar 

Pertzov B, et al. The LungVision navigational platform for peripheral lung nodule biopsy and the added value of cryobiopsy. Thorac Cancer. 2021;12(13):2007–12. https://doi.org/10.1111/1759-7714.14003.

Article  PubMed  PubMed Central  Google Scholar 

• Oberg CL, et al. Novel robotic-assisted cryobiopsy for peripheral pulmonary lesions. Lung. 2022;200(6):737–45. https://doi.org/10.1007/s00408-022-00578-3. Single center study evaluating the impact of addition of cryoprobe to biopsy peripheral pulmonary lesions.

Article  PubMed  PubMed Central  Google Scholar 

• Bhadra K, Setser RM, Condra W, Bader BA, David S. A cone beam CT bronchoscopy study of the ultrathin cryoprobe for biopsy of peripheral lung lesions. J Bronchol Interv Pulmonol. 2023. https://doi.org/10.1097/LBR.0000000000000936. Single center study evaluating the impact of addition of cryoprobe to biopsy peripheral pulmonary lesions.

Article  Google Scholar 

Bhadra K, Rickman OB, Mahajan AK, Hogarth DK. ‘Tool-in-lesion’ accuracy of galaxy system-a robotic electromagnetic navigation bronchoscopy with integrated tool-in-lesion-tomosynthesis technology: the MATCH study. J Bronchol Interv Pulmonol. 2023. https://doi.org/10.1097/LBR.0000000000000923.

Article  Google Scholar 

Chan JWY, Lau RWH, Chu CM, Ng CSH. Expanding the scope of electromagnetic navigation bronchoscopy-guided transbronchial biopsy and ablation with mobile 3D C-arm machine Cios Spin ®—feasibility and challenges. Transl. Lung Cancer Res. 2021;10(10). https://doi.org/10.21037/tlcr-21-619.

Kalchiem-Dekel O, et al. Multiplanar 3D fluoroscopy redefines tool–lesion relationship during robotic-assisted bronchoscopy. Respirology. 2021;26(1):120–3. https://doi.org/10.1111/resp.13966.

Article  PubMed  Google Scholar 

Reisenauer J, Duke JD, Kern R, Fernandez-Bussy S, Edell E. Combining shape-sensing robotic bronchoscopy with mobile three-dimensional imaging to verify tool-in-lesion and overcome divergence: a pilot study. Mayo Clin Proc Innov Qual Outcomes. 2022;6(3):177–85. https://doi.org/10.1016/j.mayocpiqo.2022.02.004.

Article  PubMed  PubMed Central  Google Scholar 

Salahuddin M, Bashour SI, Khan A, Chintalapani G, Kleinszig G, Casal RF. Mobile cone-beam CT-assisted bronchoscopy for peripheral lung lesions. Diagnostics. 2023;13(5). https://doi.org/10.3390/diagnostics13050827.

Cho RJ, Senitko M, Wong J, Dincer EH, Khosravi H, Abraham GEI. Feasibility of using the O-arm imaging system during ENB-rEBUS–guided peripheral lung biopsy: a dual-center experience. J Bronchol Interv Pulmonol. 2021;28(4):248. https://doi.org/10.1097/LBR.0000000000000738.

Article  Google Scholar 

Chambers J, Knox D, Leclair T. O-arm CT for confirmation of successful navigation during robotic assisted bronchoscopy. J Bronchol Interv Pulmonol. 2023;30(2):155. https://doi.org/10.1097/LBR.0000000000000894.

Article  Google Scholar 

Cheng GZ, Liu L, Nobari M, Miller R, Wahidi M. Cone beam navigation bronchoscopy: the next frontier. J Thorac Dis. 2020;12(6). https://doi.org/10.21037/jtd.2020.03.85.

Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: a technical review. J Thorac Dis. 2020;12(12):7416–28. https://doi.org/10.21037/jtd-20-2382.

Article  PubMed  PubMed Central  Google Scholar 

Casal RF, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis. 2018;10(12):6950–9. https://doi.org/10.21037/jtd.2018.11.21.

Article  PubMed  PubMed Central  Google Scholar 

Ali EAA, et al. Transbronchial biopsy using an ultrathin bronchoscope guided by cone-beam computed tomography and virtual bronchoscopic navigation in the diagnosis of pulmonary nodules. Respir Int Rev Thorac Dis. 2019;98(4):321–8. https://doi.org/10.1159/000500228.

Article  Google Scholar 

Yu K-L, et al. Efficacy and safety of cone-beam computed tomography-derived augmented fluoroscopy combined with endobronchial ultrasound in peripheral pulmonary lesions. Respir Int Rev Thorac Dis. 2021;100(6):538–46. https://doi.org/10.1159/000515181.

Article  Google Scholar 

• Verhoeven RLJ, Fütterer JJ, Hoefsloot W, van der Heijden EHFM. Cone-beam CT image guidance with and without electromagnetic navigation bronchoscopy for biopsy of peripheral pulmonary lesions. J Bronchol Interv Pulmonol. 2021;28(1):60. https://doi.org/10.1097/LBR.0000000000000697. Single center randomized controlled trial with a cross-over design comparing an imaging based guided approach with cone-beam CT to an electromagnetic navigation based approach.

Article  Google Scholar 

Bondue B, Taton O, Tannouri F, Van de Velde N, Remmelink M, Leduc D. High diagnostic yield of electromagnetic navigation bronchoscopy performed under cone beam CT guidance: results of a randomized Belgian monocentric study. BMC Pulm Med. 2023;23(1):185. https://doi.org/10.1186/s12890-023-02492-7.

Article  PubMed  PubMed Central  Google Scholar 

Styrvoky K, et al. Shape-sensing robotic-assisted bronchoscopy with concurrent use of radial endobronchial ultrasound and cone beam computed tomography in the evaluation of pulmonary lesions. Lung. 2022;200(6):755–61. https://doi.org/10.1007/s00408-022-00590-7.

Article  PubMed  Google Scholar 

Cumbo-Nacheli G, Velagapudi RK, Enter M, Egan JPI, Conci D. Robotic-assisted bronchoscopy and cone-beam CT: a retrospective series. J Bronchol Interv Pulmonol. 2022;29(4):303. https://doi.org/10.1097/LBR.0000000000000860.

Article  Google Scholar 

Zeng C, et al. Application of electromagnetic navigation bronchoscopy-guided microwave ablation in multiple pulmonary nodules: a single-centre study. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2022;62(40): ezac071. https://doi.org/10.1093/ejcts/ezac071.

Chang JY, et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncol. 2021;22(10):1448–57. https://doi.org/10.1016/S1470-2045(21)00401-0.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif