Molecular data reveals a new genus of blindsnakes within Asiatyphlopinae from India

Ali J. R. and Aitchison J. C. 2008 Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev. 88, 145–166.

Article  Google Scholar 

Ali W., Javid A., Hussain S. M., Azmat H. and Jabeen G. 2016 The amphibians and reptiles collected from different habitat types in District Kasur, Punjab, Pakistan. Pakistan J. Zool. 48, 1201–1204.

Google Scholar 

Boulenger G. A. 1898 Descriptions of two new blind snakes. Ann. Mag. Nat. Hist. Zool. Bot. Geol. 1, 124.

Article  Google Scholar 

Briggs J. C. 2003 The biogeographic and tectonic history of India. J. Biogeogr. 30, 381–388.

Article  Google Scholar 

Chatterjee S. and Scotese C. R. 1999 The breakup of gondwana and the evolution and biogeography of the Indian plate. Proc. Indian Natl. Sci Acad. Part A Phys. Sci. 65, 397–425.

Google Scholar 

Daudin F. M. 1803. Histoire naturelle, générale et particulière des reptiles. vol. 7. pp. 436. Dufart, Paris.

Drummond A. J. and Rambaut A. 2007 Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.

Article  PubMed  PubMed Central  Google Scholar 

Drummond A. J., Suchard M. A., Xie D. and Rambaut A. 2012 Bayesian phylogenetics with BEAUti and the BEAST 1. 7. Mol. Biol. Evol. 29, 1969–1973.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Günther A. 1864 The reptiles of British India, Taylor and Francis.

Book  Google Scholar 

Haider J., Malik I. and Shamim S. 2019 Wildlife survey of national parks to assess reptilian biodiversity, AJK. J. Bioresour. Manag. 6.

Hedges S. B., Marion A. B., Lipp K. M., Marin J. and Vidal N. 2014 A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribb. Herpetol. 49, 1–61.

Google Scholar 

Jan G. 1864 Iconographie générale des ophidiens. 3. Livraison. J.B.

Lanfear R., Calcott B., Ho S. Y. W. and Guindon S. 2012 PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701.

Article  CAS  PubMed  Google Scholar 

Matzke N. J. 2014 Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970.

Article  PubMed  Google Scholar 

Miralles A., Marin J., Markus D., Herrel A., Hedges S. B. and Vidal N. 2018 Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. J. Evol. Biol. 31, 1782–1793.

Article  PubMed  Google Scholar 

Nagy Z. T., Marion A. B., Glaw F., Miralles A., Nopper J., Vences M. and Hedges S. B. 2015 Molecular systematics and undescribed diversity of Madagascan scolecophidian snakes (Squamata: Serpentes). Zootaxa 4040, 31–47.

Article  PubMed  Google Scholar 

Nguyen L. T., Schmidt H. A., von Haeseler A. and Minh B. Q. 2015 IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274.

Article  CAS  PubMed  Google Scholar 

Oppel M. 1811 Die Ordnungen, familien und gattungen der reptilien, als prodrom einer naturgeschichte derselben. pp. 110. J. Lindauer, München.

Paradis E. and Schliep K. 2019 ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528.

Article  CAS  PubMed  Google Scholar 

Pyron R. A. and Wallach V. 2014 Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence. Zootaxa, https://doi.org/10.11646/zootaxa.3829.1.1.

Article  PubMed  Google Scholar 

Rambaut A. and Drummond A. J. 2013 Tracer v1.6. University of Edinburgh, Edinburgh, UK. (http://tree.bio.ed.ac.uk/software/tracer/).

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S. et al. 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.

Article  PubMed  PubMed Central  Google Scholar 

Sidharthan C. and Karanth K. P. 2021 India’s biogeographic history through the eyes of blindsnakes- filling the gaps in the global typhlopoid phylogeny. Mol. Phylogenet. Evol. 157, 107064.

Article  PubMed  Google Scholar 

Sidharthan C., Roy P., Narayanan S. and Karanth K. P. 2022 A widespread commensal loses its identity: suggested taxonomic revision for Indotyphlops braminus (Scolecophidia: Typhlopidae) based on molecular data. Org. Divers. Evol. 23, 169–183.

Article  Google Scholar 

Stoliczka F. 1871 Notes on some Indian and Burmese Ophidians. Proc. Asiat. Soc. Bengal 191-192.

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trifinopoulos J., Nguyen L., Von Haeseler A. and Minh B. Q. 2016 W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, 232–235.

Article  Google Scholar 

Vidal N., Marin J., Morini M., Donnellan S., Branch W. R., Thomas R. et al. 2010 Blindsnake evolutionary tree reveals long history on Gondwana. Biol. Lett. 6, 558–561.

Article  PubMed  PubMed Central  Google Scholar 

Wallach V. 2009 Ramphotyphlops braminus (Daudin): a synopsis of morphology, taxonomy, nomenclature, and distribution (Serpentes: Typhlopidae). Hamadryad 34, 34–61.

Google Scholar 

Zhang F., Jantarit S., Nilsai A., Stevens M. I., Ding Y. and Satasook C. 2018 Species delimitation in the morphologically conserved Coecobrya (Collembola: Entomobryidae): A case study integrating morphology and molecular traits to advance current taxonomy. Zool. Scripta 47, 342–356.

Article  Google Scholar 

留言 (0)

沒有登入
gif