Stable long-term outcomes after cochlear implantation in subjects with TMPRSS3 associated hearing loss: a retrospective multicentre study

Morton CC, Nance WE. Newborn hearing screening—a silent revolution. N Engl J Med. 2006;354(20):2151–64.

Article  CAS  PubMed  Google Scholar 

Smith R, Shearer AE, Camp G. Hereditary hearing loss homepage 2021. https://hereditaryhearingloss.org/. Accessed Feb 2023.

Moon IS, Grant AR, Sagi V, Rehm HL, Stankovic KM. TMPRSS3 gene variants with implications for auditory treatment and counseling. Front Genet. 2021;12:780874.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrast R, et al. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet. 2001;27(1):59–63.

Article  CAS  PubMed  Google Scholar 

Holder JT, Morrel W, Rivas A, Labadie RF, Gifford RH. Cochlear implantation and electric acoustic stimulation in children with TMPRSS3 genetic mutation. Otol Neurotol. 2021;42(3):396–401.

Article  PubMed  PubMed Central  Google Scholar 

Miyagawa M, Nishio SY, Sakurai Y, Hattori M, Tsukada K, Moteki H, et al. The patients associated with TMPRSS3 mutations are good candidates for electric acoustic stimulation. Ann Otol Rhinol Laryngol. 2015;124(Suppl 1):193s–204s.

Article  PubMed  Google Scholar 

Shearer AE, Tejani VD, Brown CJ, Abbas PJ, Hansen MR, Gantz BJ, et al. In vivo electrocochleography in hybrid cochlear implant users implicates TMPRSS3 in spiral ganglion function. Sci Rep. 2018;8(1):14165.

Article  PubMed  PubMed Central  Google Scholar 

Eppsteiner RW, Shearer AE, Hildebrand MS, Deluca AP, Ji H, Dunn CC, et al. Prediction of cochlear implant performance by genetic mutation: the spiral ganglion hypothesis. Hear Res. 2012;292(1–2):51–8.

Article  PubMed  PubMed Central  Google Scholar 

Weegerink NJD, Schraders M, Oostrik J, Huygen PLM, Strom TM, Granneman S, et al. Genotype-phenotype correlation in DFNB8/10 families with TMPRSS3 mutations. J Assoc Res Otolaryngol. 2011;12(6):753–66.

Article  PubMed  PubMed Central  Google Scholar 

Battelino S, Klancar G, Kovac J, Battelino T, Trebusak PK. TMPRSS3 mutations in autosomal recessive nonsyndromic hearing loss. Eur Arch Otorhinolaryngol. 2016;273(5):1151–4.

Article  PubMed  Google Scholar 

Chung J, Park SM, Chang SO, Chung T, Lee KY, Kim AR, et al. A novel mutation of TMPRSS3 related to milder auditory phenotype in Korean postlingual deafness: a possible future implication for a personalized auditory rehabilitation. J Mol Med (Berl). 2014;92(6):651–63.

Article  CAS  PubMed  Google Scholar 

Song MH, Jung J, Rim JH, Choi HJ, Lee HJ, Noh B, et al. Genetic inheritance of late-onset, down-sloping hearing loss and its implications for auditory rehabilitation. Ear Hear. 2020;41(1):114–24.

Article  PubMed  Google Scholar 

Tucker B, Chen Y-S, Shin T, Cabrera E, Booth K, Nelson R. Insights into the pathobiology of tmprss3-related hearing loss and implications for cochlear implant patients with TMPRSS3 Mutations. 2021.

Chen YS, Cabrera E, Tucker BJ, Shin TJ, Moawad JV, Totten DJ, et al. TMPRSS3 expression is limited in spiral ganglion neurons: implication for successful cochlear implantation. J Med Genet. 2022;59:1219–26.

Article  CAS  PubMed  Google Scholar 

Guipponi M, Toh MY, Tan J, Park D, Hanson K, Ballana E, et al. An integrated genetic and functional analysis of the role of type II transmembrane serine proteases (TMPRSSs) in hearing loss. Hum Mutat. 2008;29(1):130–41.

Article  CAS  PubMed  Google Scholar 

Guipponi M, Vuagniaux G, Wattenhofer M, Shibuya K, Vazquez M, Dougherty L, et al. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet. 2002;11(23):2829–36.

Article  CAS  PubMed  Google Scholar 

Lemmerling MM, Mancuso AA, Antonelli PJ, Kubilis PS. Normal modiolus: CT appearance in patients with a large vestibular aqueduct. Radiology. 1997;204(1):213–9.

Article  CAS  PubMed  Google Scholar 

Papsin BC. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope. 2005;115(1 Pt 2 Suppl 106):1–26.

Article  PubMed  Google Scholar 

Manzoor NF, Wick CC, Wahba M, Gupta A, Piper R, Murray GS, et al. Bilateral sequential cochlear implantation in patients with enlarged vestibular aqueduct (EVA) syndrome. Otol Neurotol. 2016;37(2):e96-103.

Article  PubMed  Google Scholar 

Benchetrit L, Jabbour N, Appachi S, Liu YC, Cohen MS, Anne S. Cochlear implantation in pediatric patients with enlarged vestibular aqueduct: a systematic review. Laryngoscope. 2022;132(7):1459–72.

Article  PubMed  Google Scholar 

Mey K, Bille M, Cayé-Thomasen P. Cochlear implantation in Pendred syndrome and non-syndromic enlarged vestibular aqueduct - clinical challenges, surgical results, and complications. Acta Otolaryngol. 2016;136(10):1064–8.

Article  PubMed  Google Scholar 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

Article  PubMed  PubMed Central  Google Scholar 

Skarzynski H, van de Heyning P, Agrawal S, Arauz SL, Atlas M, Baumgartner W, et al. Towards a consensus on a hearing preservation classification system. Acta Otolaryngol Suppl. 2013;564:3–13.

Article  Google Scholar 

Stelmachowicz PG, Pittman AL, Hoover BM, Lewis DE, Moeller MP. The importance of high-frequency audibility in the speech and language development of children with hearing loss. Arch Otolaryngol Head Neck Surg. 2004;130(5):556–62.

Article  PubMed  Google Scholar 

Ching TY, Dillon H. A brief overview of factors affecting speech intelligibility of people with hearing loss: implications for amplification. Am J Audiol. 2013;22(2):306–9.

Article  PubMed  Google Scholar 

Nishio SY, Takumi Y, Usami SI. Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea. Hear Res. 2017;348:87–97.

Article  CAS  PubMed  Google Scholar 

Holden LK, Finley CC, Firszt JB, Holden TA, Brenner C, Potts LG, et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2013;34(3):342–60.

Article  PubMed  PubMed Central  Google Scholar 

Woodson EA, Reiss LAJ, Turner CW, Gfeller K, Gantz BJ. The Hybrid cochlear implant: a review. Adv Otorhinolaryngol. 2010;67:125–34.

PubMed  Google Scholar 

O’Connell BP, Hunter JB, Gifford RH, Rivas A, Haynes DS, Noble JH, et al. Electrode location and audiologic performance after cochlear implantation: a comparative study between nucleus CI422 and CI512 electrode arrays. Otol Neurotol. 2016;37(8):1032–5.

Article  PubMed  PubMed Central  Google Scholar 

Esquia Medina GN, Borel S, Nguyen Y, Ambert-Dahan E, Ferrary E, Sterkers O, et al. Is electrode-modiolus distance a prognostic factor for hearing performances after cochlear implant surgery? Audiol Neurootol. 2013;18(6):406–13.

Article  PubMed  Google Scholar 

Heutink F, Verbist BM, van der Woude WJ, Meulman TJ, Briaire JJ, Frijns JHM, et al. Factors Influencing Speech Perception in Adults With a Cochlear Implant. Ear Hear. 2021;42(4):949–60.

Article  PubMed  PubMed Central  Google Scholar 

Cheng X, Wang B, Liu Y, Yuan Y, Shu Y, Chen B. Comparable electrode impedance and speech perception at 12 months after cochlear implantation using round window versus cochleostomy: an analysis of 40 patients. ORL J Otorhinolaryngol Relat Spec. 2018;80(5–6):248–58.

Article  PubMed  Google Scholar 

Snels C, IntHout J, Mylanus E, Huinck W, Dhooge I. Hearing Preservation in cochlear implant surgery: a meta-analysis. Otol Neurotol. 2019;40(2):145–53.

Article  PubMed  Google Scholar 

Veske A, Oehlmann R, Younus F, Mohyuddin A, Müller-Myhsok B, Mehdi SQ, et al. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan. Hum Mol Genet. 1996;5(1):165–8.

Article  CAS  PubMed  Google Scholar 

Bonné-Tamir B, DeStefano AL, Briggs CE, Adair R, Franklyn B, Weiss S, et al. Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. Am J Hum Genet. 1996;58(6):1254–9.

PubMed  PubMed Central  Google Scholar 

Havenith S, Lammers MJ, Tange RA, Trabalzini F, della Volpe A, van der Heijden GJ, et al. Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol. 2013;34(4):667–74.

Article  PubMed  Google Scholar 

Yan D, Tekin D, Bademci G, Foster J 2nd, Cengiz FB, Kannan-Sundhari A, et al. Spectrum of DNA variants for non-syndromic deafness in a large cohort from multiple continents. Hum Genet. 2016;135(8):953–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wattenhofer M, Di Iorio MV, Rabionet R, Dougherty L, Pampanos A, Schwede T, et al. Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. J Mol Med (Berl). 2002;80(2):124–31.

Article  CAS  PubMed  Google Scholar 

Miyagawa M, Naito T, Nishio SY, Kamatani N, Usami S. Targeted exon sequencing successfully discovers rare causative genes and clarifies the molecular epidemiology of Japanese deafness patients. PL

留言 (0)

沒有登入
gif