Gender Comparison of Muscle Quality and Relationship with Functional Ability

Akoglu, H. (2018). User’s guide to correlation coefficients. Turk J Emerg Med, 18, 91–93. https://doi.org/10.1016/j.tjem.2018.08.001.

Article  Google Scholar 

Bishop, P., Cureton, K., & Collins, M. (1987). Sex difference in muscular strength in equally-trained men and women. Ergonomics, 30, 675–687. https://doi.org/10.1080/00140138708969760.

Article  Google Scholar 

Bosy-Westphal, A., Jensen, B., Braun, W., et al. (2017). Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. European Journal of Clinical Nutrition, 71, 1061–1067. https://doi.org/10.1038/ejcn.2017.27.

Article  Google Scholar 

Brandon, L. J., Boyette, L. W., Gaasch, D. A., & Llyod, A. (2000). Effects of lower extremity strength training on functional mobility in older adults. Journal of Aging and Physical Activity, 8, 214.

Article  Google Scholar 

Calatayud, J., Borreani, S., Colado, J. C., et al. (2014). Muscle activity levels in upper-body push exercises with different loads and stability conditions. Phys Sportsmed, 42, 106–119. https://doi.org/10.3810/psm.2014.11.2097.

Article  Google Scholar 

Cesari, M., Fielding, R. A., Pahor, M., et al. (2012). Biomarkers of Sarcopenia in clinical trials—recommendations from the International Working Group on Sarcopenia. J Cachexia Sarcopenia Muscle, 3, 181–190. https://doi.org/10.1007/s13539-012-0078-2.

Article  Google Scholar 

Cohen, J. (1988). Statistical Power Analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates, Hillsdale.

Cruz-Jentoft, A. J., Bahat, G., Bauer, J., et al. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing, 48, 16–31. https://doi.org/10.1093/ageing/afy169.

Article  Google Scholar 

De Lira, C., Vargas, V., Silva, W., et al. (2019). Relative strength, but not absolute muscle strength, is higher in exercising compared to Non-exercising Older Women. Sports, 7, 19. https://doi.org/10.3390/sports7010019.

Article  Google Scholar 

Fragala, M. S., Kenny, A. M., & Kuchel, G. A. (2015). Muscle quality in aging: A multi-dimensional approach to muscle functioning with applications for treatment. Sports Med Auckl NZ, 45, 641–658. https://doi.org/10.1007/s40279-015-0305-z.

Article  Google Scholar 

Fukuda, D. H., Smith-Ryan, A. E., Kendall, K. L., et al. (2013). Simplified method of clinical phenotyping for older men and women using established field-based measures. Experimental Gerontology, 48, 1479–1488. https://doi.org/10.1016/j.exger.2013.10.005.

Article  Google Scholar 

Gentil, P., Steele, J., Pereira, M. C., et al. (2016). Comparison of upper body strength gains between men and women after 10 weeks of resistance training. PeerJ, 4, e1627. https://doi.org/10.7717/peerj.1627.

Article  Google Scholar 

Goodpaster, B. H., Park, S. W., Harris, T. B., et al. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1059–1064.

Article  Google Scholar 

Grualnik, J., Bandeen-Roche, K., Bhasin, S. A. R., et al. (2020). Clinically meaningful change for physical performance perspectives of the ICFSR Task Force. J Frailty Aging, 9, 9–13. https://doi.org/10.14283/jfa.2019.33.

Article  Google Scholar 

Guglielmi, G., Ponti, F., Agostini, M., et al. (2016). The role of DXA in Sarcopenia. Aging Clinical and Experimental Research, 28, 1047–1060. https://doi.org/10.1007/s40520-016-0589-3.

Article  Google Scholar 

Guralnik, J. M., Simonsick, E. M., Ferrucci, L., et al. (1994). A short physical performance Battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. Journal of Gerontology, 49, M85–94.

Article  Google Scholar 

Haff, G. G., & Triplett, T. N. (2016). Essentials of Strength Training and Conditioning (4th ed.). Human Kinetics.

He, X., Li, Z., Tang, X., et al. (2018). Age- and sex-related differences in body composition in healthy subjects aged 18 to 82 years. Medicine (Baltimore), 97, e11152. https://doi.org/10.1097/MD.0000000000011152.

Article  Google Scholar 

Herda, A. A., & Nabavizadeh, O. (2021). Short-term resistance training in older adults improves muscle quality: A randomized control trial. Experimental Gerontology, 145, 111195. https://doi.org/10.1016/j.exger.2020.111195.

Article  Google Scholar 

Herda, A. A., Stout, J. R., & Cramer, J. T. (2022). Sex-and age-related differences in body composition of healthy aging men and women. Gazzetta Medica Ital-Arch Sci Mediche, 181, 393–401.

Google Scholar 

Horstman, A. M., Dillon, E. L., Urban, R. J., & Sheffield-Moore, M. (2012). The role of androgens and estrogens on healthy aging and longevity. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67, 1140–1152. https://doi.org/10.1093/gerona/gls068.

Article  Google Scholar 

Hubal, M., Gordish-Dressman, H., Thompson, P., et al. (2005). Variability in muscle size and strength gain after Unilateral Resistance Training. Medicine and Science in Sports and Exercise, 37, 964–972. https://doi.org/10.1249.01.mss.0000170469.90461.5 f.

Google Scholar 

Ivey, F. M., Tracy, B. L., Lemmer, J. T., et al. (2000). Effects of strength training and detraining on muscle quality: Age and gender comparisons. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 55, B152–157. discussion B158-159.

Article  Google Scholar 

Janssen, I., & Ross, R. (2005). Linking age-related changes in skeletal muscle mass and composition with metabolism and Disease. The Journal of Nutrition, Health & Aging, 9, 408–419.

Google Scholar 

Janssen, I., Heymsfield, S. B., Baumgartner, R. N., & Ross, R. (2000). Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol Bethesda Md 1985 89:465–471. https://doi.org/10.1152/jappl.2000.89.2.465.

Janssen, I., Heymsfield, S. B., & Ross, R. (2002). Low relative skeletal muscle Mass (Sarcopenia) in older persons is Associated with functional impairment and physical disability. Journal of the American Geriatrics Society, 50, 889–896. https://doi.org/10.1046/j.1532-5415.2002.50216.x.

Article  Google Scholar 

Janssen, I., Baumgartner, R. N., Ross, R., et al. (2004). Skeletal muscle cutpoints Associated with elevated physical disability risk in older men and women. American Journal of Epidemiology, 159, 413–421. https://doi.org/10.1093/aje/kwh058.

Article  Google Scholar 

Kim, J., Heshka, S., Gallagher, D., et al. (2004). Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol Bethesda Md 1985, 97, 655–660. https://doi.org/10.1152/japplphysiol.00260.2004.

Article  Google Scholar 

Kim, Y. H., Kim, K. I., Paik, N. J., et al. (2016). Muscle strength: A better index of low physical performance than muscle mass in older adults. Geriatrics & Gerontology International, 16, 577–585. https://doi.org/10.1111/ggi.12514.

Article  Google Scholar 

Kvorning, T., Andersen, M., Brixen, K., & Madsen, K. (2006). Suppression of endogenous testosterone production attenuates the response to strength training: A randomized, placebo-controlled, and blinded intervention study. Am J Physiol-Endocrinol Metab, 291, E1325–E1332. https://doi.org/10.1152/ajpendo.00143.2006.

Article  Google Scholar 

Lowndes, J., Carpenter, R. L., Zoeller, R. F., et al. (2009). Association of Age with muscle size and strength before and after short-term resistance training in young adults. J Strength Cond Res, 23, 1915–1920. https://doi.org/10.1519/JSC.0b013e3181b94b35.

Article  Google Scholar 

Lynch, N. A., Metter, E. J., Lindle, R. S., et al. (1999). Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol Bethesda Md 1985, 86, 188–194. https://doi.org/10.1152/jappl.1999.86.1.188.

Article  Google Scholar 

Metter, E. J., Conwit, R., Tobin, J., & Fozard, J. L. (1997). Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol Ser A, 52A, B267–B276. https://doi.org/10.1093/gerona/52A.5.B267.

Article  Google Scholar 

Metter, E. J., Talbot, L. A., Schrager, M., & Conwit, R. (2002). Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol Ser A, 57, B359–B365. https://doi.org/10.1093/gerona/57.10.B359.

Article  Google Scholar 

Miller, A. E. J., MacDougall, J. D., Tarnopolsky, M. A., & Sale, D. G. (1993). Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology, 66, 254–262. https://doi.org/10.1007/BF00235103.

Article  Google Scholar 

Moore, A. Z., Caturegli, G., Metter, E. J., et al. (2014). Difference in muscle quality over the Adult Life Span and Biological correlates in the Baltimore Longitudinal Study of Aging. Journal of the American Geriatrics Society, 62, 230–236. https://doi.org/10.1111/jgs.12653.

Article  Google Scholar 

Nilwik, R., Snijders, T., Leenders, M., et al. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental Gerontology, 48, 492–498. https://doi.org/10.1016/j.exger.2013.02.012.

Article  Google Scholar 

Phillips, S. K., Bruce, S. A., Newton, D., & Woledge, R. C. (1992). The weakness of old age is not due to failure of muscle activation. Journal of Gerontology, 47, M45–49. https://doi.org/10.1093/geronj/47.2.m45.

Article  Google Scholar 

Ponti, F., Santoro, A., Mercatelli, D., et al. (2020). Aging and Imaging Assessment of body composition: From Fat to facts. Frontiers in Endocrinology, 10, https://doi.org/10.3389/fendo.2019.00861.

Roth, S. M., Ivey, F. M., Martel, G. F., et al. (2001). Muscle size responses to Strength Training in Young and older men and women. Journal of the American Geriatrics Society, 49, 1428–1433. https://doi.org/10.1046/j.1532-5415.2001.4911233.x.

Article  Google Scholar 

Schlüssel, M. M., dos Anjos, L. A., de Vasconcellos, M. T. L., & Kac, G. (2008). Reference values of handgrip dynamometry of healthy adults: A population-based study. Clinical Nutrition, 27, 601–607. https://doi.org/10.1016/j.clnu.2008.04.004.

Article  Google Scholar 

Sillanpää, E., Häkkinen, A., & Häkkinen, K. (2013). Body composition changes by DXA, BIA and Skinfolds during exercise training in women. European Journal of Applied Physiology, 113, 2331–2341. https://doi.org/10.1007/s00421-013-2669-9.

Article  Google Scholar 

Snijders, T., Nederveen, J. P., Bell, K. E., et al. (2019). Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. Journal of Physiology, 597, 105–119. https://doi.org/10.1113/JP276260.

Article  Google Scholar 

Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res, 19, 231–240. https://doi.org/10.1519/15184.1.

Article  Google Scholar 

Zourdos, M. C., Klemp, A., Dolan, C., et al. (2016). Novel Resistance training–specific rating of Perceived Exertion Scale Measuring repetitions in Reserve. J Strength Cond Res, 30, 267. https://doi.org/10.1519/JSC.0000000000001049.

Article  Google Scholar 

留言 (0)

沒有登入
gif