Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection

He, M.-L. et al. Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus. Febs. Lett. 580, 2414–2420 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Harrison, A. G., Lin, T. & Wang, P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 41, 1100–1115 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan, W., He, B., Wang, X. & He, M. L. Pandemic COVID-19: current status and challenges of antiviral therapies. Genes Dis. 7, 502–519 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masters, P. S. The molecular biology of Coronaviruses. Adv. Virus Res 66, 193–292 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perlman, S. & Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, F. et al. Attenuating innate immunity and facilitating beta-coronavirus infection by NSP1 of SARS-CoV-2 through specific redistributing hnRNP A2/B1 cellular localization. Signal Transduct. Target. Ther. 6, 371 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Yang, H. & Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685–700 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tortorici, M. A. & Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res. 105, 93–116 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruch, T. R. & Machamer, C. E. The coronavirus E protein: assembly and beyond. Viruses 4, 363–382 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

V’Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

Article  PubMed  Google Scholar 

Satarker, S. & Nampoothiri, M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch. Med. Res. 51, 482–491 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scherer, K. M. et al. SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. Sci. Adv. 8, eabl4895 (2022).

Article  CAS  PubMed  Google Scholar 

Lu, X., Pan, J., Tao, J. & Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42, 37–45 (2011).

Article  CAS  PubMed  Google Scholar 

Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romero-Brey, I. & Bartenschlager, R. Membranous replication factories induced by plus-strand RNA viruses. Viruses 6, 2826–2857 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6, 363–374 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortese, M. et al. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. Cell Host Microbe 28, 853–866 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snijder, E. J. et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80, 5927–5940 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff, G., Melia, C. E., Snijder, E. J. & Barcena, M. Double-membrane vesicles as platforms for viral replication. Trends Microbiol 28, 1022–1033 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff, G. et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369, 1395 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Haan, C. A. M. & Rottier, P. J. M. Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Stertz, S. et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361, 304–315 (2007).

Article  CAS  PubMed  Google Scholar 

Ghosh, S. et al. beta-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183, 1520–1535.e1514 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendonca, L. et al. SARS-CoV-2 assembly and egress pathway revealed by correlative multi-modal multi-scale cryo-imaging. Preprint at bioRxiv https://doi.org/10.1101/2020.11.05.370239 (2020).

Strating, J. R. & van Kuppeveld, F. J. Viral rewiring of cellular lipid metabolism to create membranous replication compartments. Curr. Opin. Cell Biol. 47, 24–33 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin-Acebes, M. A., Vazquez-Calvo, A. & Saiz, J. C. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Prog. Lipid Res. 64, 123–137 (2016).

Article  CAS  PubMed  Google Scholar 

Blaising, J. & Pecheur, E. I. Lipids: a key for hepatitis C virus entry and a potential target for antiviral strategies. Biochimie 95, 96–102 (2013).

Article  CAS  PubMed  Google Scholar 

Chan, R. B., Tanner, L. & Wenk, M. R. Implications for lipids during replication of enveloped viruses. Chem. Phys. Lipids 163, 449–459 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altan-Bonnet, N. Lipid tales of viral replication and transmission. Trends Cell Biol. 27, 201–213 (2017).

Article  CAS  PubMed  Google Scholar 

Monson, E. A., Trenerry, A. M., Laws, J. L., Mackenzie, J. M. & Helbig, K. J. Lipid droplets and lipid mediators in viral infection and immunity. Fems. Microbiol. Rev. 45, fuaa066 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monson, E. A., Whelan, D. R. & Helbig, K. J. Lipid droplet motility increases following viral immune stimulation. Int. J. Mol. Sci. 22, 4418 (2021).

留言 (0)

沒有登入
gif