Translatability scoring in prospective and retrospective COVID drug development cases

Wehling M (2009) Assessing the translatability of drug projects: what needs to be scored to predict success? Nat Rev Drug Discov 8(7):541–546. https://doi.org/10.1038/nrd2898

Article  CAS  PubMed  Google Scholar 

Wendler A, Wehling M (2012) Translatability scoring in drug development: eight case studies. J Transl Med 10:39. https://doi.org/10.1186/1479-5876-10-39

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wehling M (2006) Translational medicine: can it really facilitate the transition of research “from bench to bedside”? Eur J Clin Pharmacol 62(2):91–95. https://doi.org/10.1007/s00228-005-0060-4

Article  PubMed  Google Scholar 

Cummings JL (2020) Translational scoring of candidate treatments for Alzheimer’s Disease: A systematic approach. Dement Geriatr Cogn Disord 490(1):22–37. https://doi.org/10.1159/000507569

Article  CAS  Google Scholar 

Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92(4):418–423. https://doi.org/10.1002/jmv.25681

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wendler A, Wehling M (2017) Translatability score revisited: differentiation for distinct disease areas. J Transl Med 15(1):226. https://doi.org/10.1186/s12967-017-1329-y

Article  PubMed  PubMed Central  Google Scholar 

Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, Wilen CB (2021) Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biol 19(3):e3001143. https://doi.org/10.1371/journal.pbio.3001143

Pandamooz S, Jurek B, Meinung CP, Baharvand Z, Shahem-Abadi AS, Haerteis S, Miyan JA, Downing J, Dianatpour M, Borhani-Haghighi A, Salehi MS (2021) Experimental models of SARS-CoV-2 infection: possible platforms to study COVID-19 pathogenesis and potential treatments. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-121120-012309

Gerdts V, Wilson HL, Meurens F, van Drunen Littel-van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA (2015) Large animal models for vaccine development and testing. Ilar J 56(1):53–62. https://doi.org/10.1093/ilar/ilv009

Article  CAS  PubMed  Google Scholar 

Singh PK, Kulsum U, Rufai SB, Mudliar SR, Singh S (2020) Mutations in SARS-CoV-2 leading to antigenic variations in spike protein: a challenge in vaccine development. J Lab Physicians 12(2):154–160. https://doi.org/10.1055/s-0040-1715790

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kyriakidis NC, Lopez-Cortes A, Gonzalez EV, Grimaldos AB, Prado EO (2021) SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines 6(1):28. https://doi.org/10.1038/s41541-021-00292-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

DATAtab Team (2023) DATAtab: online statistics calculator. DATAtab e.U. Graz, Austria. https://datatab.net. In: ed. DATAtab

Aldrich C, Leroux-Roels I, Huang KB, Bica MA, Loeliger E, Schoenborn-Kellenberger O, Walz L, Leroux-Roels G, von Sonnenburg F, Oostvogels L (2021) Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine 39(8):1310–1318. https://doi.org/10.1016/j.vaccine.2020.12.070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K (2020) Neo-antigen mRNA vaccines. Vaccines (Basel) 8(4). https://doi.org/10.3390/vaccines8040776

Chen X, Yang J, Wang L, Liu B (2020) Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 10(13):6011–6023. https://doi.org/10.7150/thno.38742

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin P, Li J, Pan H, Wu Y, Zhu F (2021) Immunological surrogate endpoints of COVID-2019 vaccines: the evidence we have versus the evidence we need. Signal Transduct Target Ther 6(1):48. https://doi.org/10.1038/s41392-021-00481-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curevac, CureVac Final Data from Phase 2b/3 Trial of First-Generation COVID-19 Vaccine Candidate, CVnCoV, Demonstrates Protection in Age Group of 18 to 60 https://www.curevac.com/wp-content/uploads/2021/06/20210630_PR_CV_Final-analysis-of-Phase-2b-3-clinical-trial-for-CVnCoV_EN_Final.pdf. Accessed 30 Jun 2021

Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, Aroca Martinez GJ, Bonten M, Chandler R, Corral G, De Block EJL, Ecker L, Gabor JJ, Garcia Lopez CA, Gonzales L, Granados González MA, Gorini N, Grobusch MP, Hrabar AD, Junker H, Kimura A, Lanata CF, Lehmann C, Leroux-Roels I, Mann P, Martinez-Reséndez MF, Ochoa TJ, Poy CA, Reyes Fentanes MJ, Rivera Mejia LM, Ruiz Herrera VV, Sáez-Llorens X, Schönborn-Kellenberger O, Schunk M, Sierra Garcia A, Vergara I, Verstraeten T, Vico M, Oostvogels L (2022) Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis 22(3):329–340. https://doi.org/10.1016/s1473-3099(21)00677-0

Article  CAS  PubMed  Google Scholar 

Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O'Connell AM, Simons D, Blomquist PB, Zaidi A, Nash S, Iwani Binti Abdul Aziz N, Thelwall S, Dabrera G, Myers R, Amirthalingam G, Gharbia S, Barrett JC, Elson R, Ladhani SN, Ferguson N, Zambon M, Campbell CNJ, Brown K, Hopkins S, Chand M, Ramsay M, Lopez Bernal J (2022) Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 386(16):1532–1546. https://doi.org/10.1056/NEJMoa2119451

Hendin HE, Pillet S, Lara AN, Wu CY, Charland N, Landry N, Ward BJ (2017) Plant-made virus-like particle vaccines bearing the hemagglutinin of either seasonal (H1) or avian (H5) influenza have distinct patterns of interaction with human immune cells in vitro. Vaccine 35(19):2592–2599. https://doi.org/10.1016/j.vaccine.2017.03.058

Article  CAS  PubMed  Google Scholar 

Makarkov AI, Chierzi S, Pillet S, Murai KK, Landry N, Ward BJ (2017) Plant-made virus-like particles bearing influenza hemagglutinin (HA) recapitulate early interactions of native influenza virions with human monocytes/macrophages. Vaccine 35(35 Pt B):4629–4636. https://doi.org/10.1016/j.vaccine.2017.07.012

Makarkov AI, Golizeh M, Ruiz-Lancheros E, Gopal AA, Costas-Cancelas IN, Chierzi S, Pillet S, Charland N, Landry N, Rouiller I, Wiseman PW, Ndao M, Ward BJ (2019) Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages. NPJ Vaccines 4:17. https://doi.org/10.1038/s41541-019-0111-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Dai S, Wang M, Hu Z, Wang H, Deng F (2016) Virus like particle-based vaccines against emerging infectious disease viruses. Virol Sin 31(4):279–287. https://doi.org/10.1007/s12250-016-3756-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffat JM, Cheong WS, Villadangos JA, Mintern JD, Netter HJ (2013) Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells. Vaccine 31(18):2310–2316. https://doi.org/10.1016/j.vaccine.2013.02.042

Article  CAS  PubMed  Google Scholar 

Lindsay BJ, Bonar MM, Costas-Cancelas IN, Hunt K, Makarkov AI, Chierzi S, Krawczyk CM, Landry N, Ward BJ, Rouiller I (2018) Morphological characterization of a plant-made virus-like particle vaccine bearing influenza virus hemagglutinins by electron microscopy. Vaccine 36(16):2147–2154. https://doi.org/10.1016/j.vaccine.2018.02.106

Article  CAS  PubMed  Google Scholar 

Won SY, Hunt K, Guak H, Hasaj B, Charland N, Landry N, Ward BJ, Krawczyk CM (2018) Characterization of the innate stimulatory capacity of plant-derived virus-like particles bearing influenza hemagglutinin. Vaccine 36(52):8028–8038. https://doi.org/10.1016/j.vaccine.2018.10.099

Article  CAS  PubMed  Google Scholar 

Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF (2017) Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 34:123–132. https://doi.org/10.1016/j.smim.2017.08.014

Article  CAS  PubMed  Google Scholar 

Mor TS (2015) Molecular pharming’s foot in the FDA’s door: Protalix’s trailblazing story. Biotechnol Lett 37(11):2147–2150. https://doi.org/10.1007/s10529-015-1908-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward BJ, Makarkov A, Seguin A, Pillet S, Trepanier S, Dhaliwall J, Libman MD, Vesikari T, Landry N (2020) Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (>/=65 years): two multicentre, randomised phase 3 trials. Lancet 396(10261):1491–1503. https://doi.org/10.1016/S0140-6736(20)32014-6

Article  CAS  PubMed  Google Scholar 

Hager KJ, Pérez Marc G, Gobeil P, Diaz RS, Heizer G, Llapur C, Makarkov AI, Vasconcellos E, Pillet S, Riera F, Saxena P, Geller Wolff P, Bhutada K, Wallace G, Aazami H, Jones CE, Polack FP, Ferrara L, Atkins J, Boulay I, Dhaliwall J, Charland N, Couture MMJ, Jiang-Wright J, Landry N, Lapointe S, Lorin A, Mahmood A, Moulton LH, Pahmer E, Parent J, Séguin A, Tran L, Breuer T, Ceregido MA, Koutsoukos M, Roman F, Namba J, D’Aoust MA, Trepanier S, Kimura Y, Ward BJ (2022) Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N Engl J Med 386(22):2084–2096. https://doi.org/10.1056/NEJMoa2201300

Article  CAS  PubMed  Google Scholar 

Chen DS (2009) Hepatitis B vaccination: the key towards elimination and eradication of hepatitis B. J Hepatol 50(4):805–816. https://doi.org/10.1016/j.jhep.2009.01.002

Article  PubMed  Google Scholar 

Wheeler CM, Skinner SR, Del Rosario-Raymundo MR, Garland SM, Chatterjee A, Lazcano-Ponce E, Salmeron J, McNeil S, Stapleton JT, Bouchard C, Martens MG, Money DM, Quek SC, Romanowski B, Vallejos CS, Ter Harmsel B, Prilepskaya V, Fong KL, Kitchener H, Minkina G, Lim YKT, Stoney T, Chakhtoura N, Cruickshank ME, Savicheva A, da Silva DP, Ferguson M, Molijn AC, Quint WGV, Hardt K, Descamps D, Suryakiran PV, Karkada N, Geeraerts B, Dubin G, Struyf F, Group VS (2016) Efficacy, safety, and immunogenicity of the human papillomavirus 16/18 AS04-adjuvanted vaccine in women older than 25 years: 7-year follow-up of the phase 3, double-blind, randomised controlled VIVIANE study. Lancet Infect Dis 16(10):1154–1168. https://doi.org/10.1016/S1473-3099(16)30120-7

Article  CAS  Google Scholar 

Cunningham AL, Lal H, Kovac M, Chlibek R, Hwang SJ, Diez-Domingo J, Godeaux O, Levin MJ, McElhaney JE, Puig-Barbera J, Vanden Abeele C, Vesikari T, Watanabe D, Zahaf T, Ahonen A, Athan E, Barba-Gomez JF, Campora L, de Looze F, Downey HJ, Ghesquiere W, Gorfinkel I, Korhonen T, Leung E, McNeil SA, Oostvogels L, Rombo L, Smetana J, Weckx L, Yeo W, Heineman TC, Group ZOES (2016) Efficacy of the Herpes Zoster subunit vaccine in adults 70 years of age or older. N Engl J Med 375(11):1019–1032. https://doi.org/10.1056/NEJMoa1603800

Article  CAS  Google Scholar 

Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, Smith G, Patel N, Frieman MB, Haupt RE, Logue J, McGrath M, Weston S, Piedra PA, Desai C, Callahan K, Lewis M, Price-Abbott P, Formica N, Shinde V, Fries L, Lickliter JD, Griffin P, Wilkinson B, Glenn GM (2020) Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 383(24):2320–2332. https://doi.org/10.1056/NEJMoa2026920

Article  CAS  PubMed  Google Scholar 

Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, Chadwick DR, Clark R, Cosgrove C, Galloway J, Goodman AL, Heer A, Higham A, Iyengar S, Jamal A, Jeanes C, Kalra PA, Kyriakidou C, McAuley DF, Meyrick A, Minassian AM, Minton J, Moore P, Munsoor I, Nicholls H, Osanlou O, Packham J, Pretswell CH, Francisco Ramos AS, Saralaya D, Sheridan RP, Smith R, Soiza RL, Swift PA, Thomson EC, Turner J, Viljoen ME, Albert G, Cho I, Dubovsky F, Glenn G, Rivers J, Robertson A, Smith K, Toback S (2021) Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B.1.1.7 variant. medRxiv: 2021.2005.2013.21256639. https://doi.org/10.1101/2021.05.13.21256639

Goepfert PA, Fu B, Chabanon AL, Bonaparte MI, Davis MG, Essink BJ, Frank I, Haney O, Janosczyk H, Keefer MC, Koutsoukos M, Kimmel MA, Masotti R, Savarino SJ, Schuerman L, Schwartz H, Sher LD, Smith J, Tavares-Da-Silva F, Gurunathan S, DiazGranados CA, de Bruyn G (2021) Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1–2, dose-ranging study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(21)00147-X

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif