A narrative review on bacterial biofilm: its formation, clinical aspects and inhibition strategies

O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304. https://doi.org/10.1046/j.1365-2958.1998.01062.x

Article  CAS  PubMed  Google Scholar 

Ünal Turhan E, Erginkaya Z, Korukluoğlu M, Konuray G (2019) Beneficial biofilm applications in food and agricultural industry. In: Malik A, Erginkaya Z, Erten H (eds) Health and safety aspects of food processing technologies. Springer, Cham, pp 445–469. https://doi.org/10.1007/978-3-030-24903-8_15.

Qureshi N, Karcher P, Cotta M, Blaschek HP (2004) High-productivity continuous biofilm reactor for butanol production. Appl Biochem Biotechnol 114(1–3):713–721. https://doi.org/10.1385/ABAB:114:1-3:713

Article  Google Scholar 

Qureshi N (2009) Beneficial biofilms: wastewater and other industrial applications. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead, Cambridge, pp 474–498.

Licitra G, Ogier JC, Parayre S, Pediliggieri C, Carnemolla TM, Valentin H, Madec MN et al (2007) Variability of bacterial biofilms of the “tina” wood vats used in the ragusano cheese-making process. Appl Environ Microbiol 73(21):6980–6987. https://doi.org/10.1128/AEM.00835-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasim WA, Gaafar RM, Ali RMA, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227. https://doi.org/10.1016/j.aoas.2016.07.003

Article  Google Scholar 

Frazier WC, Westhoff DC (1988) Food microbiology, 4th edn. McGraw-Hill, New York, p 346

Google Scholar 

Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172. https://doi.org/10.1351/pac200173071163

Article  CAS  Google Scholar 

Kargi F, Eker S (2005) Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem 40(6):2105–2111. https://doi.org/10.1016/j.procbio.2004.07.013

Article  CAS  Google Scholar 

Miquel S, Lagrafeuille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592. https://doi.org/10.3389/fmicb.2016.00592

Article  PubMed  PubMed Central  Google Scholar 

Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C et al (2013) Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11:61. https://doi.org/10.1186/1741-7007-11-61

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin R, Miquel S, Langella P, Bermúdez-Humarán LG (2014) The role of metagenomics in understanding the human microbiome in health and disease. Virulence 5(3):413–423. https://doi.org/10.4161/viru.27864

Article  PubMed  PubMed Central  Google Scholar 

Gram L, Bagge-Ravn D, Ng YY, Gymoese P, Vogel BF (2007) Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes. Food Control 18(10):1165–1171. https://doi.org/10.1016/j.foodcont.2006.06.014

Article  CAS  Google Scholar 

Mittelman MW (1998) Structure and functional characteristics of bacterial biofilms in fluid processing operations. J Dairy Sci 81(10):2760–2764. https://doi.org/10.3168/jds.S0022-0302(98)75833-3

Article  CAS  PubMed  Google Scholar 

Vieira MJ, Melo LF, Pinheiro MM (1993) Biofilm formation: hydrodynamic effects on internal diffusion and structure. Biofouling 7(1):67–80. https://doi.org/10.1080/08927019309386244

Article  CAS  Google Scholar 

Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55(6):2655–2661. https://doi.org/10.1128/AAC.00045-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maric S, Vranes J (2007) Characteristics and significance of microbial biofilm formation. Period Biol 109:115–121

Google Scholar 

Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306. https://doi.org/10.1101/cshperspect.a010306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R (2008) Biofilm Development with an Emphasis on Bacillus subtilis . In: Romeo T (eds) Bacterial biofilms. Current topics in microbiology and immunology, vol 322. Springer, Berlin. https://doi.org/10.1007/978-3-540-75418-3_1.

Durham-Colleran MW, Verhoeven AB, van Hoek ML (2010) Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol 59(3):457–465. https://doi.org/10.1007/s00248-009-9586-9

Article  PubMed  Google Scholar 

Dean SN, Chung MC, van Hoek ML (2015) Burkholderia diffusible signal factor (BDSF) signals to Francisella novicida to disperse biofilm and increase siderophore production. Appl Environ Microbiol 81(20):7057–7066. https://doi.org/10.1128/AEM.02165-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A (2021) Microbial biofilms in the food industry-a comprehensive review. Int J Environ Res Public Health 18(4):2014. https://doi.org/10.3390/ijerph18042014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortes ME, Bonilla JC, Sinisterra RD (2011) Biofilm formation, control and novel strategies for eradication. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 896–905

Google Scholar 

Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

Article  CAS  PubMed  Google Scholar 

Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367. https://doi.org/10.1038/sj.jim.7000282

Article  CAS  PubMed  Google Scholar 

Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636. https://doi.org/10.3389/fmicb.2018.01636

Article  PubMed  PubMed Central  Google Scholar 

Wong GCL, O’Toole GA (2011) All together now: integrating biofilm research across disciplines. MRS Bull 36(5):339–342. https://doi.org/10.1557/mrs.2011.64

Article  PubMed  PubMed Central  Google Scholar 

van Hoek ML (2013) Biofilms: an advancement in our understanding of Francisella species. Virulence 4(8):833–846. https://doi.org/10.4161/viru.27023

Article  PubMed  PubMed Central  Google Scholar 

Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25(4):365–404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x

Article  CAS  PubMed  Google Scholar 

Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588. https://doi.org/10.1038/nrmicro.2016.89

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the Lux R-Lux I family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275. https://doi.org/10.1128/jb.176.2.269-275.1994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parker CT, Sperandio V (2009) Cell-to-cell signalling during pathogenesis. Cell Microbiol 11(3):363–369. https://doi.org/10.1111/j.1462-5822.2008.01272.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320. https://doi.org/10.1038/nature24624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G et al (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243–245. https://doi.org/10.1038/nm991

Article  CAS  PubMed  Google Scholar 

Lee KJ, Lee MA, Hwang W, Park H, Lee KH (2016) Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Biofouling 32(7):711–723. https://doi.org/10.1080/08927014.2016.1193595

Article  CAS  PubMed  Google Scholar 

Bucher T, Oppenheimer-Shaanan Y, Savidor A, Bloom-Ackermann Z, Kolodkin-Gal I (2015) Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ Microbiol Rep 7(6):990–1004. https://doi.org/10.1111/1758-2229.12346

Article  CAS  PubMed  Google Scholar 

Ruhal R, Kataria R (2021) Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 251:126829. https://doi.org/10.1016/j.micres.2021.126829

Article  CAS  PubMed  Google Scholar 

Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E et al (2013) Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497:388–391. https://doi.org/10.1038/nature12155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB (2008) A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320(5883):1636–1638. https://doi.org/10.1126/science.1157877

Article 

留言 (0)

沒有登入
gif