Novel synthesis of amorphous CP@HfO2 nanomaterials for high-performance electrochemical sensing of 2-naphthol

Igwe, J.C., Ukaogo, P.O.: Environmental effects of polycyclic aromatic hydrocarbons. J. Nat. Sci. Res. 5(7), 117–132 (2015)

Google Scholar 

Korashy, H.M., El-Kadi, A.O.: The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab. Rev. 38(3), 411–450 (2006)

Article  CAS  PubMed  Google Scholar 

Croera, C., Ferrario, D., Gribaldo, L.: In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1, 4-naphthoquinone on human CFU-GM from female and male cord blood donors. Toxicol. In Vitro. 22(6), 1555–1561 (2008)

Article  CAS  PubMed  Google Scholar 

Niwa, S.I., Eswaramoorthy, M., Nair, J., Raj, A., Itoh, N., Shoji, H., Namba, T., Mizukami, F.: A one-step conversion of benzene to phenol with a palladium membrane. Science 295(5552), 105–107 (2002)

Article  CAS  Google Scholar 

Zollinger, H.: Color chemistry: syntheses, properties, and applications of organic dyes and pigments. John Wiley & Sons, New Jersey (2003)

Google Scholar 

Kuhr, R.J., Dorough, H.W.: Carbamate insecticides: chemistry, biochemistry, and toxicology. CRC Press Inc, Florida (1976)

Google Scholar 

Karinen, J.F., Lamberton, J.G., Stewart, N.E., Terriere, L.C.: Marine decomposition: persistence of carbaryl in the marine estuarine environment. Chemical and biological stability in aquarium systems. J. Agric. Food Chem. 15(1), 148–156 (1967)

Article  CAS  Google Scholar 

Li, J., Li, J., Feng, H., Zhang, Y., Jiang, J., Feng, Y., Chen, M., Qian, D.: A facile one-step in situ synthesis of copper nanostructures/graphene oxide as an efficient electrocatalyst for 2-naphthol sensing application. Electrochim. Acta 153, 352–360 (2015)

Article  CAS  Google Scholar 

Zhou, C., Wang, Q.E., Zhuang, H.S.: Simultaneous determination of 1-naphthol and 2-naphthol in water by spectrofluorimetry. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 28(11), 2628–2632 (2008)

CAS  PubMed  Google Scholar 

Lim, H.H., Shin, H.S.: Simultaneous determination of 2-naphthol and 1-hydroxypyrene in fish and shellfish contaminated with crude oil by gas chromatography–mass spectrometry. Food Chem. 138(2–3), 791–796 (2013)

Article  CAS  PubMed  Google Scholar 

Ohyama, K., Kishikawa, N., Matayoshi, K., Adutwum, L.A., Wada, M., Nakashima, K., Kuroda, N.: Sensitive determination of 1-and 2-naphthol in human plasma by HPLC-fluorescence detection with 4-(4, 5-diphenyl-1H-imidazol-2-yl) benzoyl chloride as a labeling reagent. J. Sep. Sci. 32(13), 2218–2222 (2009)

Article  CAS  PubMed  Google Scholar 

Yuan, Y.K., Xiao, X.L., Wang, Y.S., Xue, J.H., Li, G.R., Kang, R.H., Zhang, J.Q., Shi, L.F.: Quartz crystal microbalance with β-cyclodextrin/TiO2 composite films coupled with chemometrics for the simultaneous determination of urinary 1-and 2-naphthol. Sens. Actuators B Chem. 145(1), 348–354 (2010)

Article  CAS  Google Scholar 

Rao, L., Zhou, P., Liu, P., Lu, X., Duan, X., Wen, Y., Zhu, Y., Xu, J.: Green preparation of amorphous molybdenum sulfide nanocomposite with biochar microsphere and its voltametric sensing platform for smart analysis of baicalin. J. Electroanal. Chem. 898, 115591 (2021)

Article  CAS  Google Scholar 

Yi, Y., Wu, S., Luo, H., He, L., Yang, Y., Xue, T., Xu, J., Wen, Y., Wang, P.: Soft template assisted hydrothermal synthesis of phosphorus doped porous carbon spheres with tunable microstructure as electrochemical nanozyme sensor for distinguishable detection of two flavonoids coupled with derivative voltammetry. J. Electroanal. Chem. 897, 115563 (2021)

Article  CAS  Google Scholar 

Ding, Y., Guo, X., Du, B., Hu, X., Yang, X., He, Y., Zhou, Y., Zang, Z.: Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets. J. Mater. Chem. 9(14), 4838–4846 (2021)

CAS  Google Scholar 

Solanki, P.R., Kaushik, A., Agrawal, V.V., Malhotra, B.D.: Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3(1), 17–24 (2011)

Article  Google Scholar 

Fernandez-Garcia, M., Rodgriguez, J.: Metal oxide nanoparticles. Brookhaven National Lab (BNL), Upton, NY (2007)

Google Scholar 

Cox, P.A.: Transition metal oxides: an introduction to their electronic structure and properties, vol. 27, pp. 1–234. Oxford University Press, Oxford (2010)

Google Scholar 

Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ortiz-Dosal, L.C., Angeles-Robles, G., Kolosovas-Machuca, E.S.: Use of hafnium (IV) oxide in biosensors. J. Immunoassay Immunochem. 39(5), 471–484 (2018)

Article  CAS  PubMed  Google Scholar 

Durrani, S.M.A.: CO-sensing properties of hafnium oxide thin films prepared by electron beam evaporation. Sens. Actuators B Chem. 120(2), 700–705 (2007)

Article  CAS  Google Scholar 

Liang, F.X., Gao, Y., Xie, C., Tong, X.W., Li, Z.J., Luo, L.B.: Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications. J. Mater. Chem. C 6(15), 3815–3833 (2018)

Article  CAS  Google Scholar 

Schindler, M., Kim, S.K., Hwang, C.S., Schindler, C., Offenhausser, A., Ingebrandt, S.: Novel post-process for the passivation of a CMOS biosensor. Phys. Stat. Solidi. Rapid Res. Lett. 2(1), 4–6 (2008)

Article  CAS  Google Scholar 

Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B.K., Malhotra, B.D.: Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens. Actuators B Chem. 235, 1–10 (2016)

Article  CAS  Google Scholar 

Fahrenkopf, N.M., Rice, P.Z., Bergkvist, M., Deskins, N.A., Cady, N.C.: Immobilization mechanisms of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surfaces for biosensing applications. ACS Appl. Mater. Interfaces 4(10), 5360–5368 (2012)

Article  CAS  PubMed  Google Scholar 

Teker, T., Aslanoglu, M.: A hafnium oxide based voltammetric platform for the sensitive determination of octopamine. Electroanalysis 33(10), 2235–2242 (2021)

Article  CAS  Google Scholar 

Pataniya, P.M., Late, D., Sumesh, C.K.: Photosensitive WS2/ZnO nano-heterostructure-based electrocatalysts for hydrogen evolution reaction. ACS Appl. Energy Mater. 4(1), 755–762 (2021)

Article  CAS  Google Scholar 

Agnihotri, A.S., Varghese, A., Nidhin, M.: Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021)

Article  Google Scholar 

Lee, M., Zine, N., Baraket, A., Zabala, M., Campabadal, F., Caruso, R., Trivella, M.G., Jaffrezic-Renault, N., Errachid, A.: A novel biosensor based on hafnium oxide: application for early stage detection of human interleukin-10. Sens. Actuators B Chem. 175, 201–207 (2012)

Article  CAS  Google Scholar 

Shaban, S.M., Lee, J.Y., Kim, D.H.: Dual-surfactant-capped Ag nanoparticles as a highly selective and sensitive colorimetric sensor for citrate detection. ACS Omega 5(19), 10696–10703 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, G., Gai, P., Yang, Y., Zhang, X., Chen, J.: Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH-β-cyclodextrin. Anal. Chim. Acta. 723, 33–38 (2012)

Article  CAS  PubMed  Google Scholar 

Tsai, M.C., Chen, P.Y.: Electrochemical detection of 2-naphthol at a glassy carbon electrode modified with tosflex film. Electroanalysis 19(12), 1315–1321 (2007)

Article  CAS  Google Scholar 

Panizza, M., Cerisola, G.: Influence of anode material on the electrochemical oxidation of 2-naphthol: part 1. Cyclic voltammetry and potential step experiments. Electrochim. Acta. 48(23), 3491–3497 (2003)

Article  CAS  Google Scholar 

Panizza, M., Cerisola, G.: Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 2. Bulk electrolysis experiments. Electrochim. Acta. 49(19), 3221–3226 (2004)

Article  CAS  Google Scholar 

Gattrell, M., Kirk, D.W.: A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J. Electrochem. Soc. 140(6), 1534 (1993)

Article  CAS  Google Scholar 

Shaban, S.M., Aiad, I., El-Sukkary, M.M., Soliman, E.A., El-Awady, M.Y.: One step green synthesis of hexagonal silver nanoparticles and their biological activity. J. Ind. Eng. Chem. 20(6), 4473–4481 (2014)

Article  CAS  Google Scholar 

Kaur, N., Kaur, G., Bhalla, A., Dhau, J.S., Chaudhary, G.R.: Metallosurfactant based Pd–Ni alloy nanoparticles as a proficient catalyst in the Mizoroki Heck coupling reaction. Green Chem. 20(7), 1506–1514 (2018)

Article  CAS  Google Scholar 

Kaur, G., Singh, P., Mehta, S.K., Kumar, S., Dilbaghi, N., Chaudhary, G.R.: A facile route for the synthesis of Co, Ni and Cu metallic nanoparticles with potential antimicrobial activity using novel metallosurfactants. Appl. Surf. Sci. 404, 254–262 (2017)

Article  CAS  Google Scholar 

Kanwar, R., Bhar, R., Mehta, S.K.: Designed meso-macroporous silica framework impregnated with copper oxide nanoparticles for enhanced catalytic performance. Chem. Cat. Chem. 10(9), 2087–2095 (2018)

CAS  Google Scholar 

Bhar, R., Kaur, G., Mehta, S.K.: Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles. J. Biomol. Struct. Dyn. 36(14), 3614–3622 (2018)

Article  CAS  PubMed  Google Scholar 

Neouze, M.A., Schubert, U.: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. Chem. Month. 139(3), 183–195 (2008)

Article  CAS  Google Scholar 

Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M.F., Kostopoulou, A., Oh, E., Susumu, K.: The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119(8), 4819–4880 (2019)

Article  CAS 

留言 (0)

沒有登入
gif