Disulfide bond-driven hyaluronic acid/sericin nanoparticles for wound-healing application

Qi, C., Xu, L., Deng, Y., Wang, G., Wang, Z., Wang, L.: Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomater. Sci. 6, 2859–2870 (2018)

Article  CAS  PubMed  Google Scholar 

Dreifke, M.B., Jayasuriya, A.A., Jayasuriya, A.C.: Current wound healing procedures and potential care. Mater. Sci. Eng. C 48, 651–662 (2015)

Article  CAS  Google Scholar 

Lim, H.W., Collins, S.A.B., Resneck, J.S., Jr., Bolognia, J., Hodge, J.A., Rohrer, T.A., Van Beek, M.J., Margolis, D.J., Sober, A.J., Weinstock, M.A., Nerenz, D.R., Begolka, W.S., Moyano, J.V.: A risk adjustment approach to estimating the burden of skin disease in the united states. J. Am. Acad. Dermatol. 78, 129–140 (2018)

Article  PubMed  Google Scholar 

Li, Y., Liu, X., Tan, L., Cui, Z., Yang, X., Zheng, Y., Yeung, K.W.K., Chu, P.K., Wu, S.: Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 28, 1800299 (2018)

Article  Google Scholar 

Dhand, C., Venkatesh, M., Barathi, V.A., Harini, S., Bairagi, S., Goh-Tze-Leng, E., Muruganandham, N., Low, K.Z.W., Fazil, M., Loh, X.J., Srinivasan, D.K., Liu, S.P., Beuerman, R.W., Verma, N.K., Ramakrishna, S., Lakshminarayanan, R.: Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials 138, 153–168 (2017)

Article  CAS  PubMed  Google Scholar 

Raaymakers, C., Verbrugghe, E., Hernot, S., Hellebuyck, T., Betti, C., Peleman, C., Claeys, M., Bert, W., Caveliers, V., Ballet, S., Martel, A., Pasmans, F., Roelants, K.: Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nat. Commun. 8, 1495 (2017)

Article  PubMed  PubMed Central  Google Scholar 

Ramanathan, G., Thyagarajan, S., Sivagnanam, U.T.: Accelerated wound healing and its promoting effects of biomimetic collagen matrices with siderophore loaded gelatin microspheres in tissue engineering. Mater. Sci. Eng. C 93, 455–464 (2018)

Article  CAS  Google Scholar 

Mantri, Y., Tsujimoto, J., Donovan, B., Fernandes, C.C., Garimella, P.S., Penny, W.F., Anderson, C.A., Jokerst, J.V.: Photoacoustic monitoring of angiogenesis predicts response to therapy in healing wounds. Wound Repair Regen. 30, 258–267 (2022)

Article  PubMed  PubMed Central  Google Scholar 

Vågesjö, E., Öhnstedt, E., Mortier, A., Lofton, H., Huss, F., Proost, P., Roos, S., Phillipson, M.: Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc. Natl. Acad. Sci. 115, 1895–1900 (2018)

Article  PubMed  PubMed Central  Google Scholar 

Jin, L., Guo, X., Gao, D., Wu, C., Hu, B., Tan, G., Du, N., Cai, X., Yang, Z., Zhang, X.: Nir-responsive mxene nanobelts for wound healing. NPG Asia Mater. 13, 24 (2021)

Article  CAS  Google Scholar 

Lu, X., Qin, L., Guo, M., Geng, J., Dong, S., Wang, K., Xu, H., Qu, C., Mia, J., Liu, M.: A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis. Carbohyd. Polym. 289, 119437 (2022)

Article  CAS  Google Scholar 

Goh, E.T., Kirby, G., Jayakumar, R., Liang, X.J., Tan, A.: Accelerated wound healing using nanoparticles, pp. 287–306. Academic Press, Boston (2016).. (M.R. Hamblin, P. Avci, T. W. Prow (eds))

Google Scholar 

Makabenta, J.M.V., Nabawy, A., Li, C.-H., Schmidt-Malan, S., Patel, R., Rotello, V.M.: Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021)

Article  CAS  PubMed  Google Scholar 

Skóra, B., Krajewska, U., Nowak, A., Dziedzic, A., Barylyak, A., Kus-Liśkiewicz, M.: Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci. Rep. 11, 13451 (2021)

Article  PubMed  PubMed Central  Google Scholar 

Liang, Y., He, J., Guo, B.: Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021)

Article  CAS  PubMed  Google Scholar 

Guo, B., Dong, R., Liang, Y., Li, M.: Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5, 773–791 (2021)

Article  CAS  PubMed  Google Scholar 

Liang, Y., Zhao, X., Hu, T., Chen, B., Yin, Z., Ma, X.P., Guo, B.: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15, 1900046 (2019)

Article  Google Scholar 

Hasanin, M., Taha, N.F., Abdou, A.R., Emara, L.H.: Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnol. Rep. 34, e00722 (2022)

Article  CAS  Google Scholar 

Dacrory, S., Hashem, A.H., Hasanin, M.: Synthesis of cellulose based amino acid functionalized nano-biocomplex: characterization, antifungal activity, molecular docking and hemocompatibility. Environ. Nanotechnol. Monit. Manag. 15, 100453 (2021)

CAS  Google Scholar 

Huanga, L., Yua, L., Yin, X., Lin, Y., Xu, Y., Niu, Y.: Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. J. Colloid Interface Sci. 622, 117–125 (2022)

Article  Google Scholar 

Hasanin, M., Swielam, E.M., Atwa, N.A., Agwa, M.M.: Novel design of bandages using cotton pads, doped with chitosan, glycogen and ZnO nanoparticles, having enhanced antimicrobial and wounds healing effects. Int. J. Biol. Macromol. 197, 121–130 (2022)

Article  CAS  PubMed  Google Scholar 

Matter, M.T., Probst, S., Läuchli, S., Herrmann, I.K.: Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceutics 12, 780 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira, A.M., Mattu, C., Ranzato, E., Ciardelli, G.: Bioinspired porous membranes containing polymer nanoparticles for wound healing. J. Biomed. Mater. Res. A. 102, 4394–4405 (2014)

PubMed  Google Scholar 

Zhang, Y., Li, D., Xu, Y., Niu, Y.: Application of a cascaded nanozyme in infected wound recovery of diabetic mice. ACS Biomater. Sci. Eng. 8, 1522–1531 (2022)

Article  CAS  PubMed  Google Scholar 

Alavi, M., Rai, M.: Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert. Rev. Anti. Infect. Ther. 18, 1021–1032 (2020)

Article  CAS  PubMed  Google Scholar 

Neuman, M.G., Nanau, R.M., Oruña-Sanchez, L., Coto, G.: Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci. 18, 53–60 (2015)

Article  CAS  PubMed  Google Scholar 

Graça, M.F.P., Miguel, S.P., Cabral, C.S.D., Correia, I.J.: Hyaluronic acid-based wound dressings: a review. Carbohyd. Polym. 241, 116364 (2020)

Article  Google Scholar 

Baptista-Silva, S., Borges, S., Costa-Pinto, A.R., Costa, R., Amorim, M., Dias, J.R., Ramos, Ó., Alves, P., Granja, P.L., Soares, R., Pintado, M., Oliveira, A.L.: In situ forming silk sericin-based hydrogel: a novel wound healing biomaterial. ACS Biomater. Sci. Eng. 7, 1573–1586 (2021)

Article  CAS  PubMed  Google Scholar 

Lamboni, L., Li, Y., Liu, J., Yang, G.: Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromol 17, 3076–3084 (2016)

Article  CAS  Google Scholar 

Yu, Q., Meng, Z., Liu, Y., Li, Z., Sun, X., Zhao, Z.: Photocuring hyaluronic acid/silk fibroin hydrogel containing curcumin loaded chitosan nanoparticles for the treatment of MG-63 cells and ME3T3-E1 cells. Polymers 13, 2302 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, M., Wang, D., Ji, N., Lee, S., Wang, G., Zheng, Y., Zhang, X., Yang, L., Qin, Z., Yang, Y.: Bioinspired design of sericin/chitosan/Ag@MOF/GO hydrogels for efficiently combating resistant bacteria, rapid hemostasis, and wound healing. Polymers 13, 2812 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bodnár, E., Bakondi, E., Kovács, K., Hegedűs, C., Lakatos, P., Robaszkiewicz, A., Regdon, Z., Virág, L., Szabó, É.: Redox profiling reveals clear differences between molecular patterns of wound fluids from acute and chronic wounds. Oxid. Med. Cell. Longev. 2018, 5286785 (2018)

Article  PubMed  PubMed Central  Google Scholar 

El-Kafrawy, D.S., Belal, T.S., Mahrous, M.S., Abdel-Khalek, M.M., Abo-Gharam, A.H.: Validated spectrophotometric and rp-hplc–dad methods for the determination of ursodeoxycholic acid based on derivatization with 2-nitrophenylhydrazine. J. AOAC Int. 100, 677–685 (2019)

Article  Google Scholar 

Jiang, T., Xie, Z., Wu, F., Chen, J., Liao, Y., Liu, L., Zhao, A., Wu, J., Yang, P., Huang, N.: Hyaluronic acid nanoparticle composite films confer favorable time-dependent biofunctions for vascular wound healing. ACS Biomater. Sci. Eng. 5, 1833–1848 (2019)

Article  CAS  PubMed  Google Scholar 

Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., Kwon, I.C., Jeong, S.Y.: Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31, 106–114 (2010)

Article  CAS  PubMed  Google Scholar 

Verma, J., Kanoujia, J., Parashar, P., Tripathi, C.B., Saraf, S.A.: Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res. 7, 77–88 (2017)

Article  CAS  PubMed  Google Scholar 

Wang, Z., Zhang, Y., Zhang, J., Huang, L., Liu, J., Li, Y., Zhang, G., Kundu, S.C., Wang, L.: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci. Rep. 4, 7064 (2014)

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif