Sexual differentiation in human malaria parasites is regulated by competition between phospholipid metabolism and histone methylation

Drakeley, C., Sutherland, C., Bousema, J. T., Sauerwein, R. W. & Targett, G. A. T. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 22, 424–430 (2006).

Article  PubMed  Google Scholar 

Kafsack, B. F. C. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brancucci, N. M. B. et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176 (2014).

Article  CAS  PubMed  Google Scholar 

Fraschka, S. A. et al. Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host Microbe 23, 407–420.e8 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Rubio, J. J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5, 179–190 (2009).

Article  CAS  PubMed  Google Scholar 

Coleman, B. I. et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16, 177–186 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brancucci, N. M. B., Witmer, K., Schmid, C. & Voss, T. S. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum. PLoS ONE 9, e100183 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Filarsky, M. et al. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 359, 1259–1263 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poran, A. et al. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551, 95–99 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Josling, G. A. et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat. Commun. 11, 1503 (2020).

Llorà-Batlle, O. et al. Conditional expression of PfAP2-G for controlled massive sexual conversion in Plasmodium falciparum. Sci. Adv. 6, eaaz5057 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kent, R. S. et al. Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite Plasmodium berghei. Nat. Microbiol. 3, 1206–1213 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neveu, G., Beri, D. & Kafsack, B. F. Metabolic regulation of sexual commitment in Plasmodium falciparum. Curr. Opin. Microbiol. 58, 93–98 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brancucci, N. M. B. et al. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell 171, 1532–1544.e15 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pollitt, L. C. et al. Competition and the evolution of reproductive restraint in malaria parasites. Am. Nat. 177, 358–367 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Joice, R. et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6, 244re5 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Venugopal, K., Hentzschel, F., Valkiūnas, G. & Marti, M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat. Rev. Microbiol. 18, 177–189 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulati, S. et al. Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host Microbe 18, 371–381 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wein, S. et al. Contribution of the precursors and interplay of the pathways in the phospholipid metabolism of the malaria parasite. J. Lipid Res. 59, 1461–1471 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilian, N., Choi, J.-Y., Voelker, D. R. & Ben Mamoun, C. Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood. J. Biol. Chem. 293, 17308–17316 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garg, A. et al.Structure, function and inhibition of the phosphoethanolamine methyltransferases of the human malaria parasites Plasmodium vivax and Plasmodium knowlesi. Sci. Rep. 5, 9064 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witola, W. H. & Ben Mamoun, C. Choline induces transcriptional repression and proteasomal degradation of the malarial phosphoethanolamine methyltransferase. Eukaryot. Cell 6, 1618–1624 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye, C., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193.e8 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prommana, P. et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS ONE 8, e73783 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warrenfeltz, S. et al. EuPathDB: the eukaryotic pathogen genomics database resource. Methods Mol. Biol. 1757, 69–113 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dechamps, S. et al. Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways. J. Lipid Res. 51, 81–96 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, S. et al. Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell 60, 408–421 (2015).

Article  CAS  PubMed  Google Scholar 

Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

Article  PubMed  Google Scholar 

Ye, C. et al. Demethylation of the protein phosphatase PP2A promotes demethylation of histones to enable their function as a methyl group sink. Mol. Cell 73, 1115–1126.e6 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutter, B. M., Wu, X., Laxman, S. & Tu, B. P. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154, 403–415 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morillo, R. C., Harris, C. T., Kennedy, K., Henning, S. R. & Kafsack, B. F. Genome-wide profiling of histone modifications in Plasmodium falciparum using CUT&RUN. Life Sci. Alliance 6, e202201778, (2022).

Salcedo-Amaya, A. M. et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 106, 9655–9660 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karmodiya, K. et al. A comprehensive epigenome map of Plasmodium falciparum reveals unique mechanisms of transcriptional regulation and identifies H3K36me2 as a global mark of gene suppression. Epigenetics Chromatin 8, 32 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Reguera, R. M., Redondo, C. M., Pérez-Pertejo, Y. & Balaña-Fouce, R. S-adenosylmethionine in protozoan parasites: functions, synthesis and regulation. Mol. Biochem Parasitol. 152, 1–10 (2007).

Article  CAS  PubMed  Google Scholar 

Luo, M. Chemical and biochemical persp

留言 (0)

沒有登入
gif