SR-B1-/-ApoE-R61h/h Mice Mimic Human Coronary Heart Disease

Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J. 2004;25(12):1077–82.

PubMed  Google Scholar 

Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.

CAS  PubMed  Google Scholar 

Yla-Herttuala S, Bentzon JF, Daemen M, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost. 2011;106(1):1–19.

CAS  PubMed  Google Scholar 

Eriksson EE. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation. 2011;124(19):2129–38.

CAS  PubMed  Google Scholar 

Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.

CAS  PubMed  Google Scholar 

Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987;68(3):231–40.

CAS  PubMed  Google Scholar 

Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A. 1992;89(10):4471–5.

CAS  PubMed  PubMed Central  Google Scholar 

Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71(2):343–53.

CAS  PubMed  Google Scholar 

Ishibashi S, Brown MS, Goldstein JL, et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993;92(2):883–93.

CAS  PubMed  PubMed Central  Google Scholar 

Johnson J, Carson K, Williams H, et al. Plaque rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse: model characterization and effects of pravastatin treatment. Circulation. 2005;111(11):1422–30.

CAS  PubMed  Google Scholar 

Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis. 2001;154(2):399–406.

CAS  PubMed  Google Scholar 

Williams H, Johnson JL, Carson KG, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2002;22(5):788–92.

CAS  PubMed  Google Scholar 

Rosenfeld ME, Polinsky P, Virmani R, et al. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol. 2000;20(12):2587–92.

CAS  PubMed  Google Scholar 

Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14(1):133–40.

CAS  PubMed  Google Scholar 

Calara F, Silvestre M, Casanada F, et al. Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol. 2001;195(2):257–63.

CAS  PubMed  Google Scholar 

Hu W, Polinsky P, Sadoun E, Rosenfeld ME, Schwartz SM. Atherosclerotic lesions in the common coronary arteries of ApoE knockout mice. Cardiovasc Pathol. 2005;14(3):120–5.

CAS  PubMed  Google Scholar 

Sasaki T, Kuzuya M, Nakamura K, et al. A simple method of plaque rupture induction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(6):1304–9.

CAS  PubMed  Google Scholar 

Hartwig H, Silvestre-Roig C, Hendrikse J, et al. Atherosclerotic plaque destabilization in mice: a comparative study. PloS One. 2015;10(10):e0141019.

PubMed  PubMed Central  Google Scholar 

Phinikaridou A, Hallock KJ, Qiao Y, Hamilton JA. A robust rabbit model of human atherosclerosis and atherothrombosis. J Lipid Res. 2009;50(5):787–97.

CAS  PubMed  PubMed Central  Google Scholar 

Shi ZS, Feng L, He X, et al. Vulnerable plaque in a Swine model of carotid atherosclerosis. AJNR Am J Neuroradiol. 2009;30(3):469–72.

PubMed  PubMed Central  Google Scholar 

Waxman S, Khabbaz K, Connolly R, et al. Intravascular imaging of atherosclerotic human coronaries in a porcine model: a feasibility study. Int J Cardiovasc Imaging. 2008;24(1):37–44.

PubMed  Google Scholar 

Ni M, Chen WQ, Zhang Y. Animal models and potential mechanisms of plaque destabilisation and disruption. Heart. 2009;95(17):1393–8.

CAS  PubMed  Google Scholar 

Thuroff JW, Hort W, Lichti H. Diameter of coronary arteries in 36 species of mammalian from mouse to giraffe. Basic Res Cardiol. 1984;79(2):199–206.

CAS  PubMed  Google Scholar 

Caligiuri G, Levy B, Pernow J, Thoren P, Hansson GK. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A. 1999;96(12):6920–4.

CAS  PubMed  PubMed Central  Google Scholar 

Nakata S, Tsutsui M, Shimokawa H, et al. Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms. Circulation. 2008;117(17):2211–23.

CAS  PubMed  Google Scholar 

Braun A, Trigatti BL, Post MJ, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res. 2002;90(3):270–6.

CAS  PubMed  Google Scholar 

Zhang S, Picard MH, Vasile E, et al. Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation. 2005;111(25):3457–64.

CAS  PubMed  Google Scholar 

Yesilaltay A, Daniels K, Pal R, Krieger M, Kocher O. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice. PloS One. 2009;4(12):e8103.

PubMed  PubMed Central  Google Scholar 

Hermann S, Kuhlmann MT, Starsichova A, et al. Imaging reveals the connection between spontaneous coronary plaque ruptures, atherothrombosis, and myocardial infarctions in HypoE/SRBI-/- mice. J Nucl Med. 2016;57(9):1420–7.

CAS  PubMed  Google Scholar 

Gonzalez L, MacDonald ME, Deng YD, Trigatti BL. Hyperglycemia aggravates diet-induced coronary artery disease and myocardial infarction in SR-B1-knockout/ApoE-hypomorphic mice. Front Physiol. 2018;9:1398.

PubMed  PubMed Central  Google Scholar 

Pal R, Ke Q, Pihan GA, et al. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am J Physiol Heart Circ Physiol. 2016;311(6):H1392–H408.

PubMed  PubMed Central  Google Scholar 

Trigatti B, Rayburn H, Vinals M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96(16):9322–7.

CAS  PubMed  PubMed Central  Google Scholar 

Calvo D, Vega MA. Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. J Biol Chem. 1993;268(25):18929–35.

CAS  PubMed  Google Scholar 

Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20.

CAS  PubMed  Google Scholar 

Hoekstra M, Van Berkel TJ, Van Eck M. Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism. World J Gastroenterol. 2010;16(47):5916–24.

CAS  PubMed  PubMed Central  Google Scholar 

Out R, Hoekstra M, Spijkers JA, et al. Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice. J Lipid Res. 2004;45(11):2088–95.

CAS  PubMed  Google Scholar 

Yeh YC, Hwang GY, Liu IP, Yang VC. Identification and expression of scavenger receptor SR-BI in endothelial cells and smooth muscle cells of rat aorta in vitro and in vivo. Atherosclerosis. 2002;161(1):95–103.

CAS  PubMed  Google Scholar 

Ishikawa Y, Kimura-Matsumoto M, Murakami M, et al. Distribution of smooth muscle cells and macrophages expressing scavenger receptor BI/II in atherosclerosis. J Atheroscler Thromb. 2009;16(6):829–39.

CAS  PubMed  Google Scholar 

Imachi H, Murao K, Cao W, et al. Expression of human scavenger receptor B1 on and in human platelets. Arterioscler Thromb Vasc Biol. 2003;23(5):898–904.

CAS  PubMed  Google Scholar 

Zhang W, Yancey PG, Su YR, et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation. 2003;108(18):2258–63.

CAS  PubMed  Google Scholar 

Zhao Y, Pennings M, Hildebrand RB, et al. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res. 2010;107(12):e20–31.

CAS  PubMed  Google Scholar 

Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278(26):23699–705.

PubMed 

留言 (0)

沒有登入
gif