Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.

Article  PubMed  Google Scholar 

Tran P, Lee SE, Kim DH, Pyo YC, Park JS. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig. 2020;50:261–70. https://doi.org/10.1007/s40005-019-00459-7.

Article  CAS  Google Scholar 

Gupta P, Neupane YR, Parvez S, Kohli K, Sultana Y. Combinatorial chemosensitive nanomedicine approach for the treatment of breast cancer. Curr Mol Med. 2022. https://doi.org/10.2174/1566524023666220819122948.

Article  PubMed  Google Scholar 

Sindhu RK, Verma R, Salgotra T, Rahman MH, Shah M, Akter R, Murad W, Mubin S, Bibi P, Qusti S, et al. Impacting the remedial potential of nano delivery-based flavonoids for breast cancer treatment. Mol. 2021;26.

Day CM, Hickey SM, Song Y, Plush SE, Garg S. Novel tamoxifen nanoformulations for improving breast cancer treatment: old wine in new bottles. Mol. 2020;25.

Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology. 2020;18:180. https://doi.org/10.1186/s12951-020-00741-z.

Article  PubMed  PubMed Central  Google Scholar 

Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine. 2021;16:2605–31. https://doi.org/10.2217/nnm-2021-0281.

Article  CAS  PubMed  Google Scholar 

Cai S, Thati S, Bagby TR, Diab H-M, Davies NM, Cohen MS, Forrest ML. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control release Off J Control Release Soc. 2010;146:212–8. https://doi.org/10.1016/j.jconrel.2010.04.006.

Article  CAS  Google Scholar 

Dao K-L, Hanson RN. Targeting the estrogen receptor using steroid-therapeutic drug conjugates (hybrids). Bioconjug Chem. 2012;23:2139–58. https://doi.org/10.1021/bc300378e.

Article  CAS  PubMed  Google Scholar 

Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta - Rev Cancer. 2019;1871:419–33. https://doi.org/10.1016/j.bbcan.2019.04.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17:1044–52.

Article  CAS  PubMed  Google Scholar 

Alhalmi A, Amin S, Khan Z, Beg S, Al kamaly O, Saleh A, Kohli K. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: formulation, optimization, in vitro, ex vivo, in vivo assessment, and acute toxicity studies. Pharmaceutics. 2022;14. https://doi.org/10.3390/pharmaceutics14091771.

Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF, Staunton, J.E., Jin, X., et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27:659–66. https://doi.org/10.1038/nbt.1549.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shanavas A, Jain NK, Kaur N, Thummuri D, Prasanna M, Prasad R, Ganga V, Naidu M, Bahadur D, Srivastava R. Polymeric core − shell combinatorial nanomedicine for synergistic anticancer therapy. 2019. https://doi.org/10.1021/acsomega.9b02167.

Linton SS, Sherwood SG, Drews KC, Kester M. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:208–22. https://doi.org/10.1002/wnan.1358.

Article  PubMed  Google Scholar 

Gurunathan S, Kang M-H, Qasim M, Kim J-H. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol. Sci. 2018;19.

Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21:223–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X-L, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15:827–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7:9518–25. https://doi.org/10.1021/nn405674m.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocha M, Chaves N, Bao S. Nanobiotechnology for breast cancer treatment. Breast Cancer - From Biol Med. 2017. https://doi.org/10.5772/66989.

Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine. 2014;9:1005–23. https://doi.org/10.2147/IJN.S55359.

Article  PubMed  PubMed Central  Google Scholar 

Fan J, Liu B, Long Y, Wang Z, Tong C, Wang W, You P, Liu X. Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition. Acta Biomater. 2020;113:554–69. https://doi.org/10.1016/j.actbio.2020.06.025.

Article  CAS  PubMed  Google Scholar 

Adair JH, Parette MP, Altinoğlu EI, Kester M. Nanoparticulate alternatives for drug delivery. ACS Nano. 2010;4:4967–70. https://doi.org/10.1021/nn102324e.

Article  CAS  PubMed  Google Scholar 

Torchilin VP. Nanoparticulates as drug carriers. London, UK: Imperial college press; 2006. ISBN 186094907X.

Patnala K, Vishwas S, Malla RR. Chapter 17 - Nanotechnology advances in breast cancer. In: Malla RR, Nagaraju GP, editors. A theranostic and precision medicine approach for female-specific cancers. Academic Press; 2021. p. 271–287. ISBN 978–0–12–822009–2.

Grewal IK, Singh S, Arora S, Sharma N. Polymeric nanoparticles for breast cancer therapy: a comprehensive review. Biointerface Res Appl Chem. 2021;11:11151–71. https://doi.org/10.33263/BRIAC114.1115111171.

Article  CAS  Google Scholar 

Singh SK, Singh S, Lillard JWJ, Singh R. Drug delivery approaches for breast cancer. Int J Nanomedicine. 2017;12:6205–18. https://doi.org/10.2147/IJN.S140325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. Semin Cancer Biol. 2021;69:226–37. https://doi.org/10.1016/j.semcancer.2019.10.020.

Article  CAS  PubMed  Google Scholar 

Velasco-Velázquez MA, Homsi N, De La Fuente M, Pestell RG. Breast cancer stem cells. Int J Biochem Cell Biol. 2012;44:573–7. https://doi.org/10.1016/j.biocel.2011.12.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wind NS, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer 2011;967419. https://doi.org/10.4061/2011/967419.

Clarke R, Leonessa F, Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol. 2005;32:S9-15. https://doi.org/10.1053/j.seminoncol.2005.09.009.

Article  CAS  PubMed  Google Scholar 

Burger H, Foekens JA, Look MP, Meijer-van Gelder ME.,Klijn JGM, Wiemer EAC, Stoter G, Nooter K. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer. Clin Cancer Res. 2003;9:827– 836.

Chintamani Singh JP, Mittal MK, Saxena S, Bansal A, Bhatia A, Kulshreshtha P. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer-a prospective clinical study. World J Surg. 2005;3:61. https://doi.org/10.1186/1477-7819-3-61.

Article  Google Scholar 

He C, Chan C, Weichselbaum RR, Fleming GF, Yamada SD, Lin W. Nanomedicine for combination therapy of cancer. EBioMedicine. 2015;2:366–7. https://doi.org/10.1016/j.ebiom.2015.05.013.

Article  PubMed  PubMed Central  Google Scholar 

Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83:1104–11. https://doi.org/10.1016/j.bcp.2012.01.008.

Article  CAS  PubMed  Google Scholar 

Valencia PM, Pridgen EM, Perea B, Gadde S, Sweeney C, Kantoff PW, Bander NH, Lippard SJ, Langer R, Karnik R, et al. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (Lond). 2013;8:687–98. https://doi.org/10.2217/nnm.12.134.

Article  CAS  PubMed  Google Scholar 

Jia J, Zhu F, Ma X, Cao Z, Cao ZW, Li Y, Li YX, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8:111–28.

Article  CAS  PubMed  Google Scholar 

Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. https://doi.org/10.1016/j.addr.2015.10.022.

Article  CAS  PubMed  Google Scholar 

Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - strategies and perspectives. J Control Release. 2016;240:489–503. https://doi.org/10.1016/j.jconrel.2016.06.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Huang Y. Medicine in drug discovery combination therapy based on nano codelivery for overcoming cancer drug resistance. Med Drug Discov. 2020;6:100024. https://doi.org/10.1016/j.medidd.2020.100024.

Article  Google Scholar 

Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81. https://doi.org/10.1124/pr.58.3.10.

Article  CAS  PubMed  Google Scholar 

Esnaashari SS, Muhammadnejad S, Amanpour S, Amani A. A Combinational approach towards treatment of breast cancer: an analysis of noscapine-loaded polymeric nanoparticles and doxorubicin. AAPS PharmSciTech. 2020;21:166. https://doi.org/10.1208/s12249-020-01710-3.

Article  CAS  PubMed  Google Scholar 

Hu C-MJ, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;10:836–41. https://doi.org/10.2174/138920009790274540.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif