Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment

Turan T, Kongpachith S, Halliwill K, Roelands J, Hendrickx W, Marincola FM, et al. A balance score between immune stimulatory and suppressive microenvironments identifies mediators of tumour immunity and predicts pan-cancer survival. Br J Cancer. Springer US; 2021;124:760–9. Available from: https://doi.org/10.1038/s41416-020-01145-4.

Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. Springer US 2021;6. Available from: https://doi.org/10.1038/s41392-021-00658-5.

Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. Springer US 2019;120:6–15. Available from: https://doi.org/10.1038/s41416-018-0328-y.

Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res Biomarker Research. 2020;8:1–16.

Google Scholar 

Schnell A, Bod L, Madi A, Kuchroo VK. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res. Springer US 2020;30:285–99. Available from: https://doi.org/10.1038/s41422-020-0277-x.

Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. Springer US 2021;21:345–59. Available from: https://doi.org/10.1038/s41568-021-00347-z.

Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, et al. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther. Springer US 2020;5. Available from: https://doi.org/10.1038/s41392-020-00348-8.

Kim R, Emi M, Tanabe K, Arihiro K. Tumor-Driven Evolution of Immunosuppressive Networks during Malignant Progression. Cancer Res. 2006;66:5527–36.

Article  CAS  PubMed  Google Scholar 

Rogovskii V. Modulation of Inflammation-Induced Tolerance in Cancer. Front Immunol. 2020;11:1–5.

Article  Google Scholar 

Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. Elsevier Ltd 2015;35:S185–98. Available from: https://doi.org/10.1016/j.semcancer.2015.03.004.

Welton RS, Blackman LR. Suicide and the air force mental health provider: Frequency and impact. Mil Med. 2006;171:844–8.

Article  PubMed  Google Scholar 

Guerrouahen BS, Maccalli C, Cugno C, Rutella S, Akporiaye ET. Reverting Immune Suppression to Enhance Cancer Immunotherapy. Front Oncol. 2020;9.

Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration. 2022;2:20210166.

Article  Google Scholar 

Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, et al. Tumor-Associated Macrophages—Implications for Molecular Oncology and Imaging. Biomedicines. 2021;9:1–20.

Article  Google Scholar 

Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020;11.

Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. BioMed Central 2022;41:1–39. Available from: https://doi.org/10.1186/s13046-022-02272-x.

Luo W, Napoleon JV, Zhang F, Lee YG, Wang B, Putt KS, et al. Repolarization of Tumor-Infiltrating Myeloid Cells for Augmentation of CAR T Cell Therapies. Front Immunol. 2022;13:1–13.

Google Scholar 

Zhou X, Tang J, Cao H, Fan H, Li B. Tissue resident regulatory T cells: Novel therapeutic targets for human disease. Cell Mol Immunol. 2015;12:543–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res Nature Publishing Group. 2017;27:109–18.

CAS  Google Scholar 

Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 2022;10:205031212110690.

Article  Google Scholar 

Qiao J, Fu YX. Cytokines that target immune killer cells against tumors. Cell Mol Immunol. Springer US 2020;17:722–7. Available from: https://doi.org/10.1038/s41423-020-0481-0.

Ito H, Ando T, Arioka Y, Saito K, Seishima M. Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology. 2015;144:621–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA, et al. Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front Immunol. 2020;11:1–15.

Article  Google Scholar 

Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol. Nature Publishing Group 2018;15:428–37. Available from: https://doi.org/10.1038/cmi.2018.4.

Dai L, Yao M, Fu Z, Li X, Zheng X, Meng S, et al. Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy. Nat Commun. Springer US 2022;13:1–17.

Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. Springer US 2020;52:1475–85. Available from: https://doi.org/10.1038/s12276-020-00500-y.

Czystowska-Kuzmicz M, Sosnowska A, Nowis D, Ramji K, Szajnik M, Chlebowska-Tuz J, et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10:1–16.

Article  CAS  Google Scholar 

Xue Q, Yan Y, Zhang R, Xiong H. Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci. 2018;19.

Clemente GS, van Waarde A, Antunes IF, Dömling A, Elsinga PH. Arginase as a potential biomarker of disease progression: A molecular imaging perspective. Int J Mol Sci. 2020;21:1–36.

Article  Google Scholar 

Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, et al. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol. 2019;176:155–76.

Article  CAS  PubMed  Google Scholar 

Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. Springer US 2019;18:197–218. Available from: https://doi.org/10.1038/s41573-018-0007-y.

Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11:5265–86.

Article  Google Scholar 

Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold tumors: A therapeutic challenge for immunotherapy. Front Immunol. 2019;10:1–10.

Article  CAS  Google Scholar 

Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2018;19.

Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol Nature Publishing Group. 2010;11:889–96.

Article  CAS  Google Scholar 

Underhill DM, Bassetti M, Rudensky A, Aderem A. Dynamic interactions of macrophages with T cells during antigen presentation. J Exp Med. 1999;190:1909–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long KB, Beatty GL. Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology. 2013;2:1–9.

Article  Google Scholar 

Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021;6.

Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. Springer US 2021;6:1–21.

Wei B, Pan J, Yuan R, Shao B, Wang Y, Guo X, et al. Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Escherichia coli Combined with Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett. 2021;21:4231–40.

Article  CAS  PubMed  Google Scholar 

Aminin D, Wang YM. Macrophages as a “weapon” in anticancer cellular immunotherapy. Kaohsiung J Med Sci. 2021;37:749–58.

Article  CAS  PubMed  Google Scholar 

Wyatt Shields C, Evans MA, Wang LLW, Baugh N, Iyer S, Wu D, et al. Cellular backpacks for macrophage immunotherapy. Sci Adv. 2020;6:1–12.

Google Scholar 

Mikami N, Kawakami R, Sakaguchi S. New Treg cell-based therapies of autoimmune diseases: towards antigen-specific immune suppression. Curr Opin Immunol Elsevier Ltd. 2020;67:36–41.

Article  CAS  Google Scholar 

Kim JH, Kim BS, Lee SK. Regulatory T cells in tumor microenvironment and approach for anticancer immunotherapy. Immune Netw. 2020;20:1–17.

Article  Google Scholar 

Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol. 2021;51:280–91.

Article  CAS  PubMed  Google Scholar 

Solomon I, Amann M, Goubier A, Arce Vargas F, Zervas D, Qing C, et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat Cancer. Springer US 2020;1:1153–66. Available from: https://doi.org/10.1038/s43018-020-00133-0.

Zammarchi F, Havenith K, Bertelli F, Vijayakrishnan B, Chivers S, van Berkel PH. CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother cancer. 2020;8:1–13.

Article  Google Scholar 

Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front Immunol. 2020;11:1–22.

CAS  Google Scholar 

Raskov H, Orhan A, Gaggar S, Gögenur I. Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis. Springer US 2022;11:1–16.

Zhang T, Xiong H, Ma X, Gao Y, Xue P, Kang Y, et al. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity. Small Methods. 2021;5:1–14.

Article  CAS  Google Scholar 

Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. Elsevier Inc 2010;140:883–99.

Stanilov N, Miteva L, Deliysky T, Jovchev J, Stanilova S. Advanced Colorectal Cancer Is Associated With Enhanced IL-23 and IL-10 Serum Levels. Lab Med. 2010;41:159–63.

Article  Google Scholar 

Hsu P, Santner-Nanan B, Hu M, Skarratt K, Lee CH, Stormon M, et al. IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol. 2015;195:3665–74.

Article  CAS  PubMed  Google Scholar 

Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther. 2005;4:924–33.

Article  CAS  PubMed  Google Scholar 

De Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med Informa Healthcare. 1995;27:537–41.

Google Scholar 

Marchi LHL, Paschoalin T, Travassos LR, Rodrigues EG. Gene therapy with interleukin-10 receptor and interleukin-12 induces a protective interferon-γ-dependent response against B16F10-Nex2 melanoma. Cancer Gene Ther Nature Publishing Group. 2010;18:110–22.

Article  Google Scholar 

Silva JR, Sales NS, Silva MO, Aps LRMM, Moreno ACR, Rodrigues EG, et al. Expression of a soluble IL-10 receptor enhances the therapeutic effects of a papillomavirus-associated antitumor vaccine in a murine model. Cancer Immunol Immunother. Springer Berlin Heidelberg 2019;68:753–63.

Shen L, Li J, Liu Q, Song W, Zhang X, Tiruthani K, et al. Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano. 2018;12:9830–41.

Article  CAS  PubMed  Google Scholar 

Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol Nature Publishing Group. 2010;10:554–67.

Article  CAS  Google Scholar 

Cai H, Dai X, Guo X, Zhang L, Cao K, Yan F, et al. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma. Acta Biomater. Elsevier Ltd 2021;127:276–86. Available from: https://doi.org/10.1016/j.actbio.2021.03.051.

Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release. Elsevier 2018;275:67–77. Available from: https://doi.org/10.1016/j.jconrel.2018.02.026.

留言 (0)

沒有登入
gif