Nanomaterials for antigen-specific immune tolerance therapy

Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18:716–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodson R. Autoimmune disease. Nature. 2021;595:S45.

Article  CAS  Google Scholar 

Bochner BS, Rothenberg ME, Boyce JA, Finkelman F. Advances in mechanisms of allergy and clinical immunology in 2012. J Allergy Clin Immunol. 2013;131:661–7.

Article  PubMed  Google Scholar 

Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008;8:169–82.

Article  CAS  PubMed  Google Scholar 

Ronchetti S, Ayroldi E, Ricci E, Gentili M, Migliorati G, Riccardi C. A glance at the use of glucocorticoids in rare inflammatory and autoimmune diseases: still an indispensable pharmacological tool? Front Immunol. 2021;11: 613435.

Article  PubMed  PubMed Central  Google Scholar 

Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9:324–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraser AG, Orchard TR, Jewell DP. The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review. Gut. 2002;50:485–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thurmond RL, Gelfand EW, Dunford PJ. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov. 2008;7:41–53.

Article  CAS  PubMed  Google Scholar 

Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov. 2019;18:905–22.

Article  CAS  PubMed  Google Scholar 

Wang D, Meiser B, Eisen HJ, Eifert S. Immunosuppression, including drug toxicity, interactions, new immunosuppressants in the pipeline. In: Feldman, D, Mohacsi, P, editors. Heart Failure. Cardiovascular Medicine. Springer, Cham. 2019;241–253.

Larché M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol. 2006;6:761–71.

Article  PubMed  Google Scholar 

Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crinò A, Spera S, Suraci C, Multari G, Cervoni M, Bitti MLM, Matteoli MC, Marietti G, Ferrazzoli F, Faldetta MRC, Giordano C, Sbriglia M, Sarugeri E, Ghirlanda G. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group Diabetologia. 2000;43:1000–4.

Article  CAS  PubMed  Google Scholar 

Harrison LC, Honeyman MC, Steele CE, Stone NL, Sarugeri E, Bonifacio E, Couper JJ, Colman PG. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care. 2004;27:2348–55.

Article  CAS  PubMed  Google Scholar 

Zajączkowska Ż, Akutko K, Kváč M, Sak B, Szydłowicz M, Hendrich AB, Iwańczak B, Kicia M. Enterocytozoon bieneusi infects children with inflammatory bowel disease undergoing immunosuppressive treatment. Front Med (Lausanne). 2021;8: 741751.

Article  PubMed  PubMed Central  Google Scholar 

Kim D, Wu Y, Shim G, Oh YK. Genome-editing-mediated restructuring of tumor immune microenvironment for prevention of metastasis. ACS Nano. 2021;15:17635–56.

Article  CAS  PubMed  Google Scholar 

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71.

Article  PubMed  PubMed Central  Google Scholar 

Karmacharya P, Patil BR, Kim JO. Recent advancements in lipid-mRNA nanoparticles as a treatment option for cancer immunotherapy. J Pharm Investig. 2022;52:415–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim G, Kim MG, Park JY, Oh YK. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv Drug Deliv Rev. 2016;105:205–27.

Article  CAS  PubMed  Google Scholar 

Hegde MM, Prabhu S, Mutalik S, Chatterjee A, Goda JS, Rao BSS. Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. J Pharm Investig. 2022;52:49–74.

Article  CAS  Google Scholar 

Le QV, Suh J, Choi JJ, Park GT, Lee JW, Shim G, Oh YK. In situ nanoadjuvant-assembled tumor vaccine for preventing long-term recurrence. ACS Nano. 2019;13:7442–62.

Article  CAS  PubMed  Google Scholar 

Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang Y, Yoo J, Kim J, Hwang Y, Shim G, Oh YK, Kim J. Electromagnetized graphene facilitates direct lineage reprogramming into dopaminergic neurons. Adv Funct Mater. 2021;31.

Wu Y, Li Q, Shim G, Oh YK. Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J Control Release. 2021;330:540–53.

Article  CAS  PubMed  Google Scholar 

Edner NM, Carlesso G, Rush JS, Walker LSK. Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 2020;19:860–83.

Article  CAS  PubMed  Google Scholar 

Yokosuka T, Masako Takamatsu M, Wakana Kobayashi-Imanishi W, Akiko Hashimoto-Tane, Miyuki Azuma, Takashi Saito. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209:1201-17.

Chen X, Fosco D, Kline DE, Meng L, Nishi S, Savage PA, Kline J. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur J Immunol. 2014;44:2603–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat Rev Immunol. 2021;21:257–67.

Article  CAS  PubMed  Google Scholar 

Askenasy N, Yolcu ES, Yaniv I, Shirwan H. Induction of tolerance using Fas ligand: a double-edged immunomodulator. Blood. 2005;105:1396–404.

Article  CAS  PubMed  Google Scholar 

Chyuan IT, Tsai HF, Wu CS, Sung CC, Hsu PN. TRAIL-mediated suppression of T cell receptor signaling inhibits t cell activation and inflammation in experimental autoimmune encephalomyelitis. Front Immunol. 2018;9:15.

Article  PubMed  PubMed Central  Google Scholar 

Cretney E, Kallies A, Nutt SL. Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol. 2013;34:74–80.

Article  CAS  PubMed  Google Scholar 

Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008;181:2277–84.

Article  CAS  PubMed  Google Scholar 

Wculek SK, Khouili SC, Priego EP, Heras-Murillo I, Sancho D. Metabolic control of dendritic cell functions: digesting information. Front Immunol. 2019;10:775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivashkiv LB. The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 2020;20:85–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marin E, Bouchet-Delbos L, Renoult O, Louvet C, Nerriere-Daguin V, Managh AJ, Even A, Giraud M, Manh TPV, Aguesse A, Bériou G, Chiffoleau E, Alliot-Licht B, Prieur X, Croyal M, Hutchinson JA, Obermajer N, Geissler EK, Vanhove B, Blancho G, Dalod M, Josien R, Pecqueur C, Cuturi MC, Moreau A. Human tolerogenic dendritic cells regulate immune responses through lactate synthesis. Cell Metab. 2019;30:1075–90.

Article  CAS  PubMed  Google Scholar 

Quinn WJ, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L, Akimova T, Angelin A, Schäfer PM, Cully MD, Perry C, Kopinski PK, Guo L, Blair IA, Ghanem LR, Leibowitz MS, Hancock WW, Moon EK, Levine MH, Eruslanov EB, Wallace DC, Baur JA, Beier UH. Lactate limits t cell proliferation via the nad(h) redox state. Cell Rep. 2020;33: 108500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–74.

Article  CAS  PubMed  Google Scholar 

Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019;19:184–97.

Article 

留言 (0)

沒有登入
gif