Vaccines prevent reinduction of rheumatoid arthritis symptoms in collagen-induced arthritis mouse model

Chen JF, et al. The impact of long-term biologics/target therapy on bone mineral density in rheumatoid arthritis: a propensity score-matched analysis. Rheumatology (Oxford). 2020;59(9):2471. https://doi.org/10.1093/RHEUMATOLOGY/KEZ655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wehr P, Purvis H, Law SC. Thomas R Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin Exp Immunol. 2019;196:1. https://doi.org/10.1111/CEI.13256.

Article  Google Scholar 

Khan S, Greenberg JD, Bhardwaj N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(10):566–71. https://doi.org/10.1038/nrrheum.2009.185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021;44(2):172. https://doi.org/10.1016/J.BJ.2020.06.010.

Article  CAS  PubMed  Google Scholar 

Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16(10):458–68. https://doi.org/10.1016/j.molmed.2010.07.004.

Article  CAS  PubMed  Google Scholar 

Ponchel F, et al. Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood. 2002;100(13):4550–6. https://doi.org/10.1182/BLOOD-2002-03-0671.

Article  CAS  PubMed  Google Scholar 

Ponchel F, et al. T-cell subset abnormalities predict progression along the inflammatory arthritis disease continuum: implications for management. Sci Reports 2020;10(1):1–10. https://doi.org/10.1038/s41598-020-60314-w.

Chang MH, et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep. 2021;(37)4:109902. https://doi.org/10.1016/J.CELREP.2021.109902.

Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020;9(4). https://doi.org/10.3390/CELLS9040880.

Cope AP. T cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10(Suppl 1):S1. https://doi.org/10.1186/AR2412.

Article  PubMed  PubMed Central  Google Scholar 

Kohem CL, Brezinschek RI, Wisbey H, Tortorella C, Lipsky PE, Oppenheimer-Marks N. Enrichment of differentiated CD45RBdim, CD27 – memory T cells in the peripheral blood, synovial fluid, and synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 1996;39(5):844–54. https://doi.org/10.1002/ART.1780390518.

Article  CAS  PubMed  Google Scholar 

Nagatani K, Sakashita E, Endo H, Minota S. A novel multi-biomarker combination predicting relapse from long-term remission after discontinuation of biological drugs in rheumatoid arthritis. Sci Reports. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-00357-9.

Article  CAS  Google Scholar 

Weyand CM, Goronzy JJ. T-cell-targeted therapies in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2006;2(4):201–10. https://doi.org/10.1038/ncprheum0142.

Article  CAS  PubMed  Google Scholar 

Ma X, Xu S. TNF inhibitor therapy for rheumatoid arthritis. Biomed Reports. 2013;1(2):177. https://doi.org/10.3892/BR.2012.42.

Article  CAS  Google Scholar 

Xinqiang S, et al. Therapeutic efficacy of experimental rheumatoid arthritis with low-dose methotrexate by increasing partially CD4+CD25+ Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Biomed Pharmacother. 2010;64(7):463–71. https://doi.org/10.1016/J.BIOPHA.2010.01.007.

Article  PubMed  Google Scholar 

Lopez-Olivo MA, Siddhanamatha HR, Shea B, Tugwell P, Wells GA, Suarez-Almazor ME Methotrexate for treating rheumatoid arthritis Cochrane Database Syst Rev 2014;2014(6). https://doi.org/10.1002/14651858.CD000957.PUB2.

Lucas CJ, Dimmitt SB, Martin JH. Optimising low-dose methotrexate for rheumatoid arthritis—a review. Br J Clin Pharmacol. 2019;85(10):2228–34. https://doi.org/10.1111/BCP.14057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albrecht K, M ler-Ladner U. Side effects and management of side effects of methotrexate in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(5 SUPPL. 61): S95–S101. [Online]. Available: https://www.clinexprheumatol.org/article.asp?a=4095%0Ahttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010707610.

Shinde CG, Venkatesh MP, Kumar TMP, Shivakumar HG. Methotrexate: a gold standard for treatment of rheumatoid arthritis. J Pain Palliat Care Pharmacother. 2014;28(4):351–8. https://doi.org/10.3109/15360288.2014.959238.

Article  PubMed  Google Scholar 

Zenuk C. Clearing up potential misconceptions about the treatment of rheumatoid arthritis and the use of methotrexate in combination therapy. Can Pharm J CPJ. 2018;151(2):94. https://doi.org/10.1177/1715163518756679.

Article  Google Scholar 

Inamdar S, et al. Biomaterial mediated simultaneous delivery of spermine and alpha ketoglutarate modulate metabolism and innate immune cell phenotype in sepsis mouse models. Biomaterials. 2022;293(August):2023. https://doi.org/10.1016/j.biomaterials.2022.121973.

Article  CAS  Google Scholar 

Mangal JL, et al. Inhibition of glycolysis in the presence of antigen generates suppressive antigen-specific responses and restrains rheumatoid arthritis in mice, 2021;277. Elsevier Ltd, 2021.

Mangal JL, Basu N, Wu HJJ, Acharya AP. Immunometabolism: an emerging target for immunotherapies to treat rheumatoid arthritis. Immunometabolism. 2021. https://doi.org/10.20900/immunometab20210032.

Teng F, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity. 2016;44:875–88. https://doi.org/10.1016/j.immuni.2016.03.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Price JE, Barth RF, Johnson CW, Staubus AE. Injection of cells and monoclonal antibodies into mice: comparison of tail vein and retroorbital routes. Proc Soc Exp Biol Med. 1984;177(2):347–53. https://doi.org/10.3181/00379727-177-41955.

Article  CAS  PubMed  Google Scholar 

Caplazi P, et al. Mouse models of rheumatoid arthritis. Vet Pathol. 2015;52(5):819–26. https://doi.org/10.1177/0300985815588612.

Article  CAS  PubMed  Google Scholar 

Li P, Schwarz EM. The TNF-α transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol. 2003;25(1):19–33. https://doi.org/10.1007/S00281-003-0125-3.

Article  PubMed  Google Scholar 

Ditzel HJ. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol Med. 2004;10(1):40–5. https://doi.org/10.1016/j.molmed.2003.11.004.

Article  CAS  PubMed  Google Scholar 

Nandakumar KS, Holmdahl R. Antibody-induced arthritis: disease mechanisms and genes involved at the effector phase of arthritis. Arthritis Res Ther. 2006;8(6)223. https://doi.org/10.1186/AR2089.

Miyoshi M, Liu S. Collagen-induced arthritis models. Methods Mol Biol. 2018;1868:3–7. https://doi.org/10.1007/978-1-4939-8802-0_1.

Article  CAS  PubMed  Google Scholar 

Hagert C, et al. Chronic active arthritis driven by macrophages without involvement of T cells: a novel experimental model of rheumatoid arthritis. Arthritis Rheumatol. 2018;70(8):1343–53. https://doi.org/10.1002/art.40482.

Article  CAS  PubMed  Google Scholar 

Bajtner E, Nandakumar KS, Engström A, Holmdahl R. Chronic development of collagen-induced arthritis is associated with arthritogenic antibodies against specific epitopes on type II collagen. Arthritis Res Ther. 2005;7(5):R1148. https://doi.org/10.1186/AR1800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butz DE, Li G, Huebner SM, Cook ME. A mechanistic approach to understanding conjugated linoleic acid’s role in inflammation using murine models of rheumatoid arthritis. Am J Physiol Regul Integr Comp Physiol. 2007;293(2). https://doi.org/10.1152/AJPREGU.00005.2007/ASSET/IMAGES/LARGE/ZH60090759320005.JPEG.

Tuncel J, et al. Self-reactive T cells induce and perpetuate chronic relapsing arthritis. Arthritis Res Ther. 2020;22(1). https://doi.org/10.1186/s13075-020-2104-7.

Steel CD, Stephens AL, Hahto SM, Singletary SJ, Ciavarra RP. Comparison of the lateral tail vein and the retro-orbital venous sinus as routes of intravenous drug delivery in a transgenic mouse model. Lab Anim (NY). 2008;37(1):26–32. https://doi.org/10.1038/laban0108-26.

Article  PubMed  Google Scholar 

Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S. Retro-orbital injections in mice. Lab Anim (NY). 2011;40(5):155. https://doi.org/10.1038/LABAN0511-155.

Article  PubMed  Google Scholar 

Kang YK, et al. Humanizing NOD/SCID/IL-2Rγnull (NSG) mice using busulfan and retro-orbital injection of umbilical cord blood-derived CD34+ cells. Blood Res. 2016;51(1):31–6. https://doi.org/10.5045/br.2016.51.1.31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389(10086):2338–48. https://doi.org/10.1016/S0140-6736(17)31491-5.

Article  PubMed  Google Scholar 

Zijlstra TR, Moens HB, Bukhari MA. The rheumatoid arthritis articular damage score: first steps in developing a clinical index of long term damage in RA. Ann Rheum Dis. 2002;61(1):20. https://doi.org/10.1136/ARD.61.1.20.

Trikha R, et al. Active rheumatoid arthritis in a mouse model is not an independent risk factor for periprosthetic joint infection. PLoS One, 2021;16(8):e0250910. https://doi.org/10.1371/JOURNAL.PONE.0250910.

van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020;110:102392. https://doi.org/10.1016/J.JAUT.2019.102392.

Pérez-Martínez PI, Hernández VG, Rodríguez-Espinosa O, Arce-Paredes P, Rojas-Espinosa O. Differential anti-inflammatory effects of three purified omega unsaturated fatty acids on collagen-induced arthritis in mouse. Mod Res Inflamm. 2016;5:31–44. https://doi.org/10.4236/mri.2016.53004.

Article  CAS  Google Scholar 

Mangal JL, et al. Metabolite releasing polymers control dendritic cell function by modulating their energy metabolism. J Mater Chem B. 2020;8(24):5195–203. https://doi.org/10.1039/d0tb00790k.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolon B, et al. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol. 2011;2011. https://doi.org/10.1155/2011/569068.

Brand DD. Rodent models of rheumatoid arthritis the need for rodent models of arthritis. Comp Med. 2005;55(2):114–22.

CAS  PubMed  Google Scholar 

Zhang Z, Cao Y, Yuan Q, Zhang A, Zhang K, Wang Z. Shexiang-Wulong pills attenuate rheumatoid arthritis by alleviating inflammation in a mouse model of collagen-induced arthritis. Evidence-based Complement Altern Med. 2019;2019. https://doi.org/10.1155/2019/5308405.

Choy EH, Kavanaugh AF, Jones SA. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol. 2013;9(3):154–63. https://doi.org/10.1038/nrrheum.2013.8.

Article  CAS  PubMed  Google Scholar 

Rubbert-Roth A, Szabó MZ, Kedves M, Nagy G, Atzeni F, Sarzi-Puttini P. Failure of anti-TNF treatment in patients with rheumatoid arthritis: the pros and cons of the early use of alternative biological agents. Autoimmun Rev. 2019;18(12).

Atzeni F, Sarzi-Puttini P. The therapeutic journey of biologic agents: there will be an end?. Pharmacol Res. 2019;147. https://doi.org/10.1016/J.PHRS.2019.104340.

Zamri F, de Vries TJ. Use of TNF inhibitors in rheumatoid arthritis and implications for the periodontal status: for the benefit of both? Front Immunol. 2020;11:2686. https://doi.org/10.3389/FIMMU.2020.591365/BIBTEX.

留言 (0)

沒有登入
gif