Nanoassemblies from the aqueous extract of roasted coffee beans modulate the behavioral and molecular effects of smoking withdrawal–induced anxiety in female rats

Mazzone P, et al. Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood-brain barrier: expanding the awareness of smoking toxicity in an underappreciated area. Int J Environ Res Public Health. 2010;7(12):4111–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Zyoud W, et al. Salivary microbiome and cigarette smoking: a first of its kind investigation in Jordan. Int J Environ Res Public Health. 2020;17(1):256.

Article  CAS  Google Scholar 

Jing Z, et al. Association of smoking status and health-related quality of life: difference among young, middle-aged, and older adults in Shandong. China Qual Life Res. 2021;30(2):521–30.

Article  PubMed  Google Scholar 

Gülçin I. Antioxidant activity of food constituents: an overview. Arch Toxikol. 2012;86(3):345–91.

Article  Google Scholar 

Fluharty M, et al. The association of cigarette smoking with depression and anxiety: a systematic review. Nicotine Tob Res. 2016;19(1):3–13.

Article  PubMed  PubMed Central  Google Scholar 

Turner JR, et al. Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry. 2014;19(7):801–10.

Article  CAS  PubMed  Google Scholar 

Choi S, Krishnan J, Ruckmani K. Cigarette smoke and related risk factors in neurological disorders: an update. Biomed Pharmacother. 2017;85:79–86.

Article  PubMed  Google Scholar 

Rom O, et al. Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol. 2013;187(1):5–10.

Article  CAS  PubMed  Google Scholar 

Yang S-R, et al. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L567-L576.

Liang Y, et al. Therapeutic potential and mechanism of Dendrobium officinale polysaccharides on cigarette smoke-induced airway inflammation in rat. Biomed Pharmacother. 2021;143: 112101.

Article  CAS  PubMed  Google Scholar 

Berríos-Cárcamo P, et al. Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules. Antioxidants. 2020;9(9):830.

Bechard AR, Knackstedt LA. Glutamatergic neuroplasticity in addiction. In: Neural Mechanisms of Addiction. Elsevier; 2019. p. 61–74.

Chapter  Google Scholar 

D’souza MS, Markou A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract. 2011;6(1):4.

PubMed  PubMed Central  Google Scholar 

Rao P, Sari Y. Effects of ceftriaxone on chronic ethanol consumption: a potential role for xCT and GLT1 modulation of glutamate levels in male P rats. J Mol Neurosci. 2014;54(1):71–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu GL, et al. The sources and mechanisms of bioactive ingredients in coffee. Food Funct. 2019;10(6):3113–26.

Article  CAS  PubMed  Google Scholar 

Montenegro J, et al. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE). Food Res Int. 2021;140: 110014.

Article  CAS  PubMed  Google Scholar 

Mojica BE, et al. The impact of the roast levels of coffee extracts on their potential anticancer activities. J Food Sci. 2018;83(4):1125–30.

Article  CAS  PubMed  Google Scholar 

Borrelli RC, et al. Chemical characterization and antioxidant properties of coffee melanoidins. J Agric Food Chem. 2002;50(22):6527–33.

Article  CAS  PubMed  Google Scholar 

Kim JY, et al. Coffee melanoidin-based multipurpose film formation: application to single-cell nanoencapsulation. ChemNanoMat. 2020;6(3):379–85.

Article  CAS  Google Scholar 

Daglia M, et al. Isolation of high molecular weight components and contribution to the protective activity of coffee against lipid peroxidation in a rat liver microsome system. J Agric Food Chem. 2008;56(24):11653–60.

Article  CAS  PubMed  Google Scholar 

Bakuradze T, et al. Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines. Mol Nutr Food Res. 2010;54(12):1734–43.

Article  CAS  PubMed  Google Scholar 

Sauer T, et al. Activation of the transcription factor Nrf2 in macrophages, Caco-2 cells and intact human gut tissue by Maillard reaction products and coffee. Amino Acids. 2013;44(6):1427–39.

Article  CAS  PubMed  Google Scholar 

Kolb H, Kempf K, Martin S. Health effects of coffee: mechanism unraveled? Nutrients. 2020;12(6):1842.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sunoqrot S, et al. Coffee bean polyphenols can form biocompatible template-free antioxidant nanoparticles with various sizes and distinct colors. ACS Omega. 2021;6(4):2767–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singleton VL, Orthofer R, Lamuela-Raventós RM. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in Enzymology. Elsevier; 1999. p. 152–78.

Google Scholar 

Al-Shalabi E, et al. Rhoifolin loaded in PLGA nanoparticles alleviates oxidative stress and inflammation in vitro and in vivo. Biomater Sci. 2022. https://doi.org/10.1039/D2BM00309K.

Ashcroft RE. The declaration of Helsinki. The Oxford Textbook Clin Res Ethics. 2008;141–148.

Smoking is down, but almost 38 million American adults still smoke. Centers for Disease Control and Prevention (CDC) 2018 [cited 2022 April 1]. Available from: https://www.cdc.gov/media/releases/2018/p0118-smoking-rates-declining.html.

Miguel JP, et al. Cigarette smoke exposure causes systemic and autonomic cardiocirculatory changes in rats depending on the daily exposure dose. Life Sci. 2021;277: 119498.

Article  CAS  PubMed  Google Scholar 

Paxinos G, Watson C. The rat brain in stereotaxic coordinates: Hard Cover Edition. 2006. Elsevier.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Li M, et al. Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003;302(5652):1972–5.

Article  CAS  PubMed  Google Scholar 

Wu D, et al. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev. 2021;50(7):4432–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sunoqrot S, et al. Bioinspired polymerization of quercetin to produce a curcumin-loaded nanomedicine with potent cytotoxicity and cancer-targeting potential in vivo. ACS Biomater Sci Eng. 2019;5(11):6036–45.

Article  CAS  PubMed  Google Scholar 

Sunoqrot S, et al. Nature-inspired polymerization of quercetin to produce antioxidant nanoparticles with controlled size and skin tone-matching colors. Molecules. 2019;24(21):3815.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sunoqrot S, Al-Shalabi E, Messersmith PB. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater Sci. 2018;6(10):2656–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sunoqrot S, et al. Amphotericin B-loaded plant-inspired polyphenol nanoparticles enhance its antifungal activity and biocompatibility. ACS Appl Bio Mater. 2022;5(11):5156–64.

Article  CAS  PubMed  Google Scholar 

Chen Z, et al. Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J Am Chem Soc. 2013;135(11):4179–82.

Article  CAS  PubMed  Google Scholar 

Sahiner N, Sagbas S, Aktas N. Single step natural poly (tannic acid) particle preparation as multitalented biomaterial. Mater Sci Eng C. 2015;49:824–34.

Article  CAS  Google Scholar 

Wang T, et al. Therapeutic nanoparticles from grape seed for modulating oxidative stress. Small. 2021;17(45):2102485.

Article  CAS  Google Scholar 

Lynch WJ. Sex and ovarian hormones influence vulnerability and motivation for nicotine during adolescence in rats. Pharmacol Biochem Behav. 2009;94(1):43–50.

Chen H, Matta SG, Sharp BM. Acquisition of nicotine self-administration in adolescent rats given prolonged access to the drug. Neuropsychopharmacology. 2007;32(3):700–9.

Article  CAS  PubMed  Google Scholar 

Schassburger RL, et al. Adolescent rats self-administer less nicotine than adults at low doses. Nicotine Tob Res. 2016;18(9):1861–8.

Article  PubMed  PubMed Central  Google Scholar 

Xue S, et al. Rewarding effects of nicotine in adolescent and adult male and female rats as measured using intracranial self-stimulation. Nicotine Tob Res. 2020;22(2):172–9.

Article  PubMed  Google Scholar 

Harrod SB, et al. Sex differences and repeated intravenous nicotine: behavioral sensitization and dopamine receptors. Pharmacol Biochem Behav. 2004;78(3):581–592.

Carlezon WA, Chartoff EH. Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of

留言 (0)

沒有登入
gif