Mannose-modified hyaluronic acid nanocapsules for the targeting of tumor-associated macrophages

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416. https://doi.org/10.1038/nrclinonc.2016.217.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52. https://doi.org/10.4049/jimmunol.1000413.

Article  CAS  PubMed  Google Scholar 

DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–82. https://doi.org/10.1038/s41577-019-0127-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10:58. https://doi.org/10.1186/s13045-017-0430-2.

Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17:887–904. https://doi.org/10.1038/nrd.2018.169.

Andón FT, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso MJ, Allavena P. Targeting tumor associated macrophages: the new challenge for nanomedicine. Semin Immunol. 2017;34:103–13. https://doi.org/10.1016/J.SMIM.2017.09.004.

Article  PubMed  Google Scholar 

Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater. 2019;31:e1808303. https://doi.org/10.1002/adma.201808303.

Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol. 2007;127:2031–41. https://doi.org/10.1038/sj.jid.5700827.

Article  CAS  PubMed  Google Scholar 

Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, Yu X, Luo Q, Zhang Z. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11:9536–49. https://doi.org/10.1021/acsnano.7b05465.

Article  CAS  PubMed  Google Scholar 

Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29:1005–10. https://doi.org/10.1038/nbt.1989.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alupei MC, Licarete E, Patras L, Banciu M. Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress. Cancer Lett. 2015;356:946–52. https://doi.org/10.1016/j.canlet.2014.11.010.

Article  CAS  PubMed  Google Scholar 

Jung K, Heishi T, Khan OF, Kowalski PS, Incio J, Rahbari NN, Chung E, Clark JW, Willett CG, Luster AD, Yun SH, Langer R, Anderson DG, Padera TP, Jain RK, Fukumura D. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J Clin Invest. 2017;127:3039–51. https://doi.org/10.1172/JCI93182.

Article  PubMed  PubMed Central  Google Scholar 

Rajan R, Sabnani MK, Mavinkurve V, Shmeeda H, Mansouri H, Bonkoungou S, Le AD, Wood LM, Gabizon AA, La-Beck NM. Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. J Control Release. 2018;271:139–48. https://doi.org/10.1016/j.jconrel.2017.12.023.

Article  CAS  PubMed  Google Scholar 

Wang Y, Lin YX, Qiao SL, An HW, Ma Y, Qiao ZY, Rajapaksha RY, Wang H. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153–63. https://doi.org/10.1016/j.biomaterials.2016.09.034.

Article  CAS  PubMed  Google Scholar 

Dacoba TG, Anthiya S, Berrecoso G, Fernández‐Mariño I, Fernández‐Varela C, Crecente‐Campo J, Teijeiro‐Osorio D, Torres Andón F, Alonso MJ. Nano-oncologicals: a tortoise trail reaching new avenues. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202009860.

Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech. 2018;19:166–75. https://doi.org/10.1208/s12249-017-0833-y.

Article  CAS  PubMed  Google Scholar 

Huang W-C, Chen S-H, Chiang W-H, Huang C-W, Lo C-L, Chern C-S, Chiu H-C. Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor. Biomacromol. 2016;17:3883–92. https://doi.org/10.1021/acs.biomac.6b00956.

Article  CAS  Google Scholar 

Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating MicroRNA-125b. Nano Lett. 2018;18:3571–9. https://doi.org/10.1021/acs.nanolett.8b00689.

Article  CAS  PubMed  Google Scholar 

Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015;6:201. https://doi.org/10.3389/fimmu.2015.00201.

Zhang H, Zhang X, Ren Y, Cao F, Hou L, Zhang Z. An in situ microenvironmental nano-regulator to inhibit the proliferation and metastasis of 4T1 tumor. Theranostics. 2019;9:3580–94. https://doi.org/10.7150/thno.33141.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-targeted drug delivery and the (many) problems we know of: the case of CD44 and hyaluronic acid. Adv Biosyst. 2018;2:1800049. https://doi.org/10.1002/adbi.201800049.

Oyarzun-Ampuero FA, Goycoolea FM, Torres D, Alonso MJ. A new drug nanocarrier consisting of polyarginine and hyaluronic acid. Eur J Pharm Biopharm. 2011;79:54–7. https://doi.org/10.1016/J.EJPB.2011.04.008.

Article  CAS  PubMed  Google Scholar 

Oyarzun-Ampuero FA, Brea J, Loza MI, Torres D, Alonso MJ. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm. 2009;381:122–9. https://doi.org/10.1016/J.IJPHARM.2009.04.009.

Article  CAS  PubMed  Google Scholar 

Oyarzun-Ampuero FA, Rivera-Rodriguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci. 2013;49:483–90. https://doi.org/10.1016/J.EJPS.2013.05.008.

Article  CAS  PubMed  Google Scholar 

Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. 2016;11:2341–2357. https://doi.org/10.2217/NNM-2016-0117.

Berrecoso G, Crecente-Campo J, Alonso MJ. Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv Transl Res. 2022. https://doi.org/10.1007/S13346-022-01150-5.

Article  PubMed  PubMed Central  Google Scholar 

Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine (Lond). 2016;11:2341–57. https://doi.org/10.2217/NNM-2016-0117.

Article  CAS  PubMed  Google Scholar 

Teijeiro-Valiño C, Novoa-Carballal R, Borrajo E, Vidal A, Alonso-Nocelo M, de la Fuente Freire M, Lopez-Casas PP, Hidalgo M, Csaba N, Alonso MJ. A multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release. 2019;294:154–164. https://doi.org/10.1016/j.jconrel.2018.12.002.

Raviña M, Cubillo E, Olmeda D, Novoa-Carballal R, Fernandez-Megia E, Riguera R, Sánchez A, Cano A, Alonso MJ. Hyaluronic acid/chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy: an application for pDNA and siRNA delivery. Pharm Res. 2010;27:2544–55. https://doi.org/10.1007/S11095-010-0263-Y.

Article  PubMed  Google Scholar 

De La Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008;49:2016–24. https://doi.org/10.1167/IOVS.07-1077.

Article  PubMed  Google Scholar 

Dacoba TG, Omange RW, Li H, Crecente-Campo J, Luo M, Alonso MJ. Polysaccharide nanoparticles can efficiently modulate the immune response against an hiv peptide antigen. ACS Nano. 2019;13:4947–59. https://doi.org/10.1021/ACSNANO.8B07662.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parajó Y, D’Angelo I, Welle A, Garcia-Fuentes M, Alonso MJ. Hyaluronic acid/chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv. 2010;17:596–604. https://doi.org/10.3109/10717544.2010.509357.

Article  CAS  PubMed  Google Scholar 

Molina-Crespo Á, Cadete A, Sarrio D, Gámez-Chiachio M, Martinez L, Chao K, Olivera A, Gonella A, Díaz E, Palacios J, Dhal PK, Besev M, Rodríguez-Serrano M, García Bermejo ML, Triviño JC, Cano A, García-Fuentes M, Herzberg O, Torres D, Alonso MJ, Moreno-Bueno G. Intracellular delivery of an antibody targeting gasdermin-B reduces HER2 breast cancer aggressiveness. Clin Cancer Res An Off J Am Assoc Cancer Res. 20119;25:4846–4858. https://doi.org/10.1158/1078-0432.CCR-18-2381.

Martinez-Pomares L. The mannose receptor. J Leukoc Biol. 2012;92:1177–86. https://doi.org/10.1189/jlb.0512231.

Article  CAS  PubMed  Google Scholar 

Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55. https://doi.org/10.1016/S1471-4906(02)02302-5.

Article  CAS  PubMed  Google Scholar 

Zhu S, Niu M, O’Mary H, Cui Z. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm. 2013;10:3525–30. https://doi.org/10.1021/mp400216r.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niu M, Naguib YW, Aldayel AM, Shi Y, Hursting SD, Hersh MA, Cui Z. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol Pharm. 2014;11:4425–36. https://doi.org/10.1021/mp500565q.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm. 2016;13:1833–42. https://doi.org/10.1021/acs.molpharmaceut.5b00987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng H, Chen B, Huang W, Tang Y, Jiang Y, Zhang W, Huang Y. Reprogramming tumor-associated macrophages to reverse EGFR(T790M) resistance by dual-targeting codelivery of gefitinib/vorinostat. Nano Lett. 2017;17:7684–90. https://doi.org/10.1021/acs.nanolett.7b03756.

Article  CAS  PubMed  Google Scholar 

Shi

留言 (0)

沒有登入
gif