A wide-range ratiometric sensor mediating fluorescence and scattering based on carbon dots/metal–organic framework composites for the detection of bisulfite/sulfite in sugar

Li K, Li LL, Zhou Q, Yu KK, Kim JS, Yu XQ. Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coord Chem Rev. 2019;388:310–33. https://doi.org/10.1016/j.ccr.2019.03.001.

Article  CAS  Google Scholar 

Jiang L, Chen T, Song E, Fan Y, Min D, Zeng L, Bao GM. High-performance near-infrared fluorescence probe for fast and specific visualization of harmful sulfite in food, living cells, and zebrafish. Chem Eng J. 2022;427:131563. https://doi.org/10.1016/j.cej.2021.131563.

Article  CAS  Google Scholar 

Peng L, Yang M, Zhang M, Jia M. A ratiometric fluorescent sensor based on carbon dots for rapid determination of bisulfite in sugar. Food Chem. 2022;392:133265. https://doi.org/10.1016/j.foodchem.2022.133265.

Article  CAS  PubMed  Google Scholar 

Feng H, Liu J, Qaitoon A, Meng Q, Sultanbawa Y, Zhang Z, Xu ZP, Zhang R. Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. Trends Anal Chem. 2021;136:116199. https://doi.org/10.1016/j.trac.2021.116199.

Article  CAS  Google Scholar 

Pan X, Cheng S, Zhang C, Qi X. Two highly sensitive fluorescent probes based on cinnamaldehyde with large Stokes shift for sensing of HSO3− in pure water and living cells. Anal Bioanal Chem. 2020;412:6959–68. https://doi.org/10.1007/s00216-020-02827-x.

Article  CAS  PubMed  Google Scholar 

Tamima U, Santra M, Song CW, Reo YJ, Ahn KH. A benzopyronin-based two-photon fluorescent probe for ratiometric imaging of lysosomal bisulfite with complete spectral separation. Anal Chem. 2019;91:10779–85. https://doi.org/10.1021/acs.analchem.9b02384.

Article  CAS  PubMed  Google Scholar 

Zeng L, Chen T, Chen BQ, Yuan HQ, Sheng R, Bao GM. A distinctive mitochondrion-targeting, in situ-activatable near-infrared fluorescent probe for visualizing sulfur dioxide derivatives and their fluctuations in vivo. J Mater B. 2020;8:1914–21. https://doi.org/10.1039/C9TB02593F.

Article  CAS  Google Scholar 

Zeng L, Wu X, Hu Q, Yuan HQ, Bao GM. A single fluorescent chemosensor for discriminative detection of bisulfite and benzoyl peroxide in food with different emission. Sens Actuators B Chem. 2019;299:126994. https://doi.org/10.1016/j.snb.2019.126994.

Article  CAS  Google Scholar 

Agarwalla H, Pal S, Paul A, Jun YW, Bae J, Ahn KH, Srivastava DN, Das A. A fluorescent probe for bisulfite ions: its application to two-photon tissue imaging. J Mater B. 2016;4:7888–94. https://doi.org/10.1039/C6TB02637K.

Article  CAS  Google Scholar 

David CI, Jayaraj H, Prabakaran G, Velmurugan K, Devi DP, Kayalvizhi R, Abiram A, Kannan VR, Nandhakumar R. A photoswitchable “turn-on” fluorescent chemosensor: quinoline-naphthalene duo for nanomolar detection of aluminum and bisulfite ions and its multifarious applications. Food Chem. 2022;371:131130. https://doi.org/10.1016/j.foodchem.2021.131130.

Article  CAS  Google Scholar 

Xu ZY, Wu Y, Wang XH, Chen JR, Luo HQ, Li NB. Designing of a high-performance fluorescent small molecule enables dual-mode and ultra-sensitive fluorescence visualizing of HSO3− and HClO in dried fruit, beverage, and water samples. Food Chem. 2022;397:133754. https://doi.org/10.1016/j.foodchem.2022.133754.

Article  CAS  PubMed  Google Scholar 

Zhang C, Ling X, Mei Q, He H, Deng S, Zhang Y. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide. Analyst. 2020;145:537–43. https://doi.org/10.1039/C9AN01725A.

Article  CAS  PubMed  Google Scholar 

Chen H, Xu L, Tuo W, Chen X, Huang J, Zhang X, Sun Y. Fabrication of a smart nanofluidic biosensor through a reversible covalent bond strategy for high-efficiency bisulfite sensing and removal. Anal Chem. 2020;92:4131–6. https://doi.org/10.1021/acs.analchem.0c00131.

Article  CAS  PubMed  Google Scholar 

Qu F, Wang B, Li K, You J, Han W. Copper nanoclusters@Al3+ complexes with strong and stable aggregation-induced emission for application in enzymatic determination of urea. Microchim Acta. 2020;187:457. https://doi.org/10.1007/s00604-020-04438-w.

Article  CAS  Google Scholar 

Yu T, Yin G, Niu T, Yin P, Li H, Zhang Y, Chen H, Zeng Y, Yao S. A novel colorimetric and fluorescent probe for simultaneous detection of SO32−/HSO3− and HSO4− by different emission channels and its bioimaging in living cells. Talanta. 2018;176:1–7. https://doi.org/10.1016/j.talanta.2017.08.001.

Article  CAS  PubMed  Google Scholar 

Liu F, Wang M, He Y, Song G, Zhao J. Smartphone-assisted ratiometric fluorescence sensing platform for the detection of doxycycline based on BCNO QDs and calcium ion. Microchim Acta. 2022;189:113. https://doi.org/10.1007/s00604-022-05224-6.

Article  CAS  Google Scholar 

Guo NWH, Peng L, Chen Y, Liu Y, Li C, Zhang H, Yang W. A novel ratiometric fluorescence sensor based on lanthanide-functionalized MOF for Hg2+ detection. Talanta. 2022;250:123710. https://doi.org/10.1016/j.talanta.2022.123710.

Article  CAS  Google Scholar 

Zhang Z, Tao H, Cao Q, Li L, Xu S, Li Y, Liu Y. Ratiometric fluorescence sensor for sensitive detection of inorganic phosphate in environmental samples. Anal Bioanal Chem. 2022;414:3507–15. https://doi.org/10.1007/s00216-022-03973-0.

Article  CAS  PubMed  Google Scholar 

Wang H, Fu T, Ai M, Liu J. Ratiometric fluorescence nanoprobe based on carbon dots and terephthalic acid for determining Fe2+ in environmental samples. Anal Bioanal Chem. 2022;414:6735–41. https://doi.org/10.1007/s00216-022-04233-x.

Article  CAS  PubMed  Google Scholar 

Tan H, Wu X, Weng Y, Lu Y, Huang ZZ. Self-assembled FRET nanoprobe with metal–organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal Chem. 2020;92:3447–54. https://doi.org/10.1021/acs.analchem.9b05565.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Ren W, Fan YZ, Dong JX, Luo HQ, Li NB. A facile and label-free ratiometric optical sensor for selective detection of norepinephrine by combining second-order scattering and fluorescence signals. Anal Bioanal Chem. 2019;411:3081–9. https://doi.org/10.1007/s00216-019-01762-w.

Article  CAS  PubMed  Google Scholar 

Srinivasan S, Ranganathan V, DeRosa MC, Murari BM. Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP. Anal Bioanal Chem. 2019;411:1319–30. https://doi.org/10.1007/s00216-018-1484-x.

Article  CAS  PubMed  Google Scholar 

Yuan X, Zhao H, Bai F, Zhao P, Zhao L, Xiong Z. Fluorescence and scattering based dual-optical signals ratiometric sensing and logic gate device for acetylcholinesterase activity assay. Microchem J. 2021;170:106768. https://doi.org/10.1016/j.microc.2021.106768.

Article  CAS  Google Scholar 

Liu SG, Li N, Han L, Li LJ, Li NB, Luo HQ. Size-dependent modulation of fluorescence and light scattering: a new strategy for development of ratiometric sensing. Mater Horiz. 2018;5:454–60. https://doi.org/10.1039/C7MH00872D.

Article  CAS  Google Scholar 

Fan YZ, Han L, Yang YZ, Sun Z, Li N, Li BL, Luo HQ, Li NB. Multifunctional binding strategy on nonconjugated polymer nanoparticles for ratiometric detection and effective removal of mercury ions. Environ Sci Technol. 2020;54:10270–8. https://doi.org/10.1021/acs.est.0c00702.

Article  CAS  PubMed  Google Scholar 

Fu B, Chen J, Cao Y, Li H, Gao F, Guo DY, Wang F, Pan Q. Post-modified metal-organic framework as ratiometric fluorescence-scattering probe for trace ciprofloxacin residue based on competitive coordination. Sens Actuators B Chem. 2022;369:132261. https://doi.org/10.1016/j.snb.2022.132261.

Article  CAS  Google Scholar 

Gan Z, Zhang T, An X, Tan Q, Zhen S, Hu X. A novel fluorescence-scattering ratiometric sensor based on Fe-N-C nanozyme with robust oxidase-like activity. Sens Actuators B Chem. 2022;368:132181. https://doi.org/10.1016/j.snb.2022.132181.

Article  CAS  Google Scholar 

Tang Q, Sun Z, Qing M, Wang L, Ling Y, Li NB, Luo HQ. An optical sensing system with ratiometric and turn-off dual-mode of CDs@MnO2 nanosheets for the determination of H2O2 and glucose based on a combination of first-order scattering, fluorescence, and second-order scattering. Spectrochim Acta A Mol Biomol Spectrosc. 2022;264:120299. https://doi.org/10.1016/j.saa.2021.120299.

Article  CAS  PubMed  Google Scholar 

Deng J, Wang K, Wang M, Yu P, Mao L. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J Am Chem Soc. 2017;139:5877–82. https://doi.org/10.1021/jacs.7b01229.

Article  CAS  PubMed  Google Scholar 

Zou WS, Zhao QC, Kong WL, Wang XF, Chen XM, Zhang J, Wang YQ. Multi-level fluorescent logic gate based on polyamine coated carbon dots capable of responding to four stimuli. Chem Eng J. 2018;337:471–9. https://doi.org/10.1016/j.cej.2017.12.123.

Article  CAS  Google Scholar 

Cai Y, Zhu H, Zhou W, Qiu Z, Chen C, Qileng A, Liu Y. Capsulation of AuNCs with AIE effect into metal–organic framework for the marriage of a fluorescence and colorimetric biosensor to detect organophosphorus pesticides. Anal Chem. 2021;93(19):7275–82.

Article  CAS  PubMed  Google Scholar 

Xie W, Wan F. Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification. Energy Convers Manag. 2019;198:111922. https://doi.org/10.1016/j.enconman.2019.111922.

Article  CAS  Google Scholar 

Wang J, Zang W, Xi S, Kosari M, Pennycook SJ, Zeng HC. Trimetal atoms confined in openly accessible nitrogen-doped carbon constructs for an efficient ORR. J Mater Chem A. 2020;8(33):17266–75. https://doi.org/10.1039/D0TA05984F.

Article  CAS  Google Scholar 

Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J Am Chem Soc. 2008;130(38):12626–7. https://doi.org/10.1021/ja805222x.

Article  CAS  PubMed  Google Scholar 

Zhang FM, Dong H, Zhang X, Sun XJ, Liu M, Yang DD, Wei JZ. Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl Mater Interfaces. 2017;9(32):27332–7. https://doi.org/10.1021/acsami.7b08451.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif