The Microbiome in Advanced Melanoma: Where Are We Now?

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA A Cancer J Clinicians. 72:7–33. Available from: https://onlinelibrary.wiley.com/doi/10.3322/caac.21708. Accessed 4/1/23.

Guy GP, Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U.S., 2002−2006 and 2007−2011. Am J Prev Med. 2015;48:183–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749379714005108. Accessed 4/1/23.

Article  PubMed  Google Scholar 

Freeman GJ, Borriello F, Hodes RJ, Reiser H, Hathcock KS, Laszlo G, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science. 1993;262:907–9. Available from: https://www.science.org/doi/10.1126/science.7694362. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Lombard LA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993;262:909–11. Available from: https://www.science.org/doi/10.1126/science.7694363. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA. 1990;87:5031–5. Available from: https://pnas.org/doi/full/10.1073/pnas.87.13.5031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK. Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174:561–9. Available from: https://rupress.org/jem/article/174/3/561/24411/CTLA4-is-a-second-receptor-for-the-B-cell. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1:793–801. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761394800219. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997;185:393–404. Available from: https://rupress.org/jem/article/185/3/393/7083/CD80-B71-Binds-Both-CD28-and-CTLA4-with-a-Low. Accessed 4/1/23.

Article  PubMed  PubMed Central  Google Scholar 

Brunet J-F, Denizot F, Luciani M-F, Roux-Dosseto M, Suzan M, Mattei M-G, et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature. 1987;328:267–70. Available from: http://www.nature.com/articles/328267a0. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/1074761395901256. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–8. Available from: https://www.science.org/doi/10.1126/science.270.5238.985. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171:1393–405. Available from: https://rupress.org/jem/article/171/5/1393/24421/LAG3-a-novel-lymphocyte-activation-gene-closely. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Okazaki T, Okazaki I, Wang J, Sugiura D, Nakaki F, Yoshida T, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 2011;208:395–407. Available from: https://rupress.org/jem/article/208/2/395/40858/PD1-and-LAG3-inhibitory-coreceptors-act. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34. Available from: https://rupress.org/jem/article/192/7/1027/8251/Engagement-of-the-Pd1-Immunoinhibitory-Receptor-by. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9. Available from: http://www.nature.com/articles/nm1299_1365. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Andrews LP, Marciscano AE, Drake CG, Vignali DAA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8. Available from: http://www.nature.com/articles/ni0301_261. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Tseng S-Y, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-Dc, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001;193:839–46. Available from: https://rupress.org/jem/article/193/7/839/25946/B7Dc-a-New-Dendritic-Cell-Molecule-with-Potent. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DAA. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol. 2002;32:2255–63.

Article  CAS  PubMed  Google Scholar 

Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.

Article  CAS  PubMed  Google Scholar 

Maeda TK, Sugiura D, Okazaki I, Maruhashi T, Okazaki T. Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. J Biol Chem. 2019;294:6017–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021925820366734. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86. Available from:https://rupress.org/jem/article/207/10/2175/40768/Upregulation-of-Tim3-and-PD1-expression-is. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fairfax BP, Taylor CA, Watson RA, Nassiri I, Danielli S, Fang H, et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat Med. 2020;26:193–9. Available from: http://www.nature.com/articles/s41591-019-0734-6. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen Y-JJ, Chitre AS, et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature. 2020;579:274–8. Available from: http://www.nature.com/articles/s41586-020-2056-8. Accessed 4/1/23.

Article  CAS  PubMed  Google Scholar 

Valpione S, Galvani E, Tweedy J, Mundra PA, Banyard A, Middlehurst P, et al. Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat Cancer. 2020;1:210–21. Available from: http://www.nature.com/articles/s43018-019-0022-x. Accessed 4/1/23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, et al. Tumor-infiltrating NY-ESO-1–specific CD8 + T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA. 2010;107:7875–80. Available from: https://pnas.org/doi/full/10.1073/pnas.1003345107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

Article  CAS  PubMed  Google Scholar 

Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

Article  CAS  PubMed  Google Scholar 

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

Article  CAS  PubMed  Google Scholar 

Palmer AC, Sorger PK. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell. 2017;171:1678–1691.e13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei SC, Anang N-AAS, Sharma R, Andrews MC, Reuben A, Levine JH, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci U S A. 2019;116:22699–709.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

Article  PubMed 

留言 (0)

沒有登入
gif