Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes

Claypool, G. E. & Kvenvolden, K. A. Methane and other hydrocarbon gases in marine sediment. Annu. Rev. Earth Planet. Sci. 11, 299–327 (1983).

Article  CAS  Google Scholar 

Simoneit, B. R. T. Petroleum generation, an easy and widespread process in hydrothermal systems: an overview. Appl. Geochem. 5, 3–15 (1990).

Article  CAS  Google Scholar 

Kissin, Y. V. Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum crudes. Geochim. Cosmochim. Acta 51, 2445–2457 (1987).

Article  CAS  Google Scholar 

Watkinson, R. J. & Morgan, P. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1, 79–92 (1990).

Article  CAS  PubMed  Google Scholar 

Aeckersberg, F., Bak, F. & Widdel, F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156, 5–14 (1991).

Article  CAS  Google Scholar 

Kniemeyer, O. et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449, 898–901 (2007).

Article  CAS  PubMed  Google Scholar 

Rabus, R. et al. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J. Bacteriol. 183, 1707–1715 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

Article  CAS  PubMed  Google Scholar 

Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G. & DeLong, E. F. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805 (1999).

Article  CAS  PubMed  Google Scholar 

Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K. & Jaun, B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606–608 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism. Sci. Adv. 7, eabj1453 (2021).

Article  CAS  PubMed  Google Scholar 

Chen, S. C. et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568, 108–111 (2019).

Article  CAS  PubMed  Google Scholar 

Hahn, C. J. et al. Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane. mBio 11, e00600–e00620 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).

Article  PubMed  Google Scholar 

Zhou, Z. et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 601, 257–262 (2022).

Article  CAS  PubMed  Google Scholar 

Holler, T. et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 5, 1946–1956 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krukenberg, V. et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ. Microbiol. 18, 3073–3091 (2016).

Article  CAS  PubMed  Google Scholar 

Johansen, N. G., Ettre, L. S. & Miller, R. L. Quantitative analysis of hydrocarbons by structural group type in gasolines and distillates: I. Gas chromatography. J. Chromatogr. A 256, 393–417 (1983).

Article  CAS  Google Scholar 

Vishnoi, S. C., Bhagat, S. D., Kapoor, V. B., Chopra, S. K. & Krishna, R. Simple gas chromatographic determination of the distribution of normal alkanes in the kerosene fraction of petroleum. Analyst 112, 49–52 (1987).

Article  CAS  Google Scholar 

Ono, Y., Takeuchi, Y. & Hisanaga, N. A comparative study on the toxicity of n-hexane and its isomers on the peripheral nerve. Int. Arch. Occup. Environ. Health 48, 289–294 (1981).

Article  CAS  PubMed  Google Scholar 

Trac, L. N., Schmidt, S. N. & Mayer, P. Headspace passive dosing of volatile hydrophobic chemicals – aquatic toxicity testing exactly at the saturation level. Chemosphere 211, 694–700 (2018).

Article  CAS  PubMed  Google Scholar 

Hua, Z.-S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).

Article  CAS  PubMed  Google Scholar 

Lynes, M. M. et al. Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME Commun. 3, 22 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Teske, A. et al. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. 7, 75 (2016).

Article  PubMed  PubMed Central  Google Scholar 

McKay, L. et al. Thermal and geochemical influences on microbial biogeography in the hydrothermal sediments of Guaymas Basin, Gulf of California. Environ. Microbiol. Rep. 8, 150–161 (2016).

Article  CAS  PubMed  Google Scholar 

Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. & DeLong, E. F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69, 5483–5491 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hahn, C. J., Lemaire, O. N., Engilberge, S., Wegener, G. & Wagner, T. Crystal structure of a key enzyme for anaerobic ethane activation. Science 373, 118–121 (2021).

Article  CAS  PubMed  Google Scholar 

Gunsalus, R. P., Romesser, J. A. & Wolfe, R. S. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17, 2374–2377 (1978).

Article  CAS  PubMed  Google Scholar 

Lemaire, O. N. & Wagner, T. A structural view of alkyl-coenzyme M reductases, the first step of alkane anaerobic oxidation catalyzed by archaea. Biochemistry 61, 805–821 (2022).

Article  CAS  PubMed  Google Scholar 

Rojo, F. Degradation of alkanes by bacteria. Environ. Microbiol. 11, 2477–2490 (2009).

Article  CAS  PubMed  Google Scholar 

Chadwick, G. L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Konstantinidis, K. T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Schulz, H. Beta oxidation of fatty acids. Biochim. Biophys. Acta 1081, 109–120 (1991).

Article  CAS  PubMed  Google Scholar 

Wongkittichote, P., Ah Mew, N. & Chapman, K. A. Propionyl-CoA carboxylase – a review. Mol. Genet. Metab. 122, 145–152 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolan, S. K. et al. Loving the poison: the methylcitrate cycle and bacterial pathogenesis. Microbiology 164, 251–259 (2018).

Article  CAS  PubMed  Google Scholar 

Adam, P. S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat. Microbiol. 4, 2155–2163 (2019).

Article  PubMed 

留言 (0)

沒有登入
gif