The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role

Myocarditis BC. N Engl J Med. 2022;387(16):1488–500.

Article  Google Scholar 

Sagar S, Liu PP, Cooper LT. Myocarditis Lancet. 2012;379:738–47. https://doi.org/10.1016/S0140-6736(11)60648-X.

Article  PubMed  Google Scholar 

Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, Heymans S, Jahns R, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2013;34:2636–2648, 2648a–2648d. https://doi.org/10.1093/eurheartj/eht210.

Chimenti C, Scopelliti F, Vulpis E, Tafani M, Villanova L, Verardo R, De Paulis R, Russo MA, Frustaci A. Increased oxidative stress contributes to cardiomyocyte dysfunction and death in patients with Fabry disease cardiomyopathy. Hum Pathol. 2015;46:1760–8.

Article  CAS  PubMed  Google Scholar 

Frustaci A, Sabbioni E, Fortaner S, Farina M, del Torchio R, Tafani M, Morgante E, Ciriolo MR, Russo MA, Chimenti C. Selenium- and zinc-deficient cardiomyopathy in human intestinal malabsorption: preliminary results of selenium/zinc infusion. Eur J Heart Fail. 2012;14:202–16.

Article  CAS  PubMed  Google Scholar 

Chimenti C, Russo A, Pieroni M, Calabrese F, Verardo R, Thiene G, Russo MA, Maseri A, Frustaci A. Intramyocyte detection of Epstein-Barr virus genome by laser capture microdissection in patients with inflammatory cardiomyopathy. CCirculation. 2004;110(23):3534–9.

Article  CAS  Google Scholar 

Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White paper. J Am Coll Cardiol. 2009;53:1475–87. https://doi.org/10.1016/j.jacc.2009.02.007.

Article  PubMed  PubMed Central  Google Scholar 

Heymans S, Eriksson U, Lehtonen J, Cooper LT. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68:2348–64. https://doi.org/10.1016/j.jacc.2016.09.937.

Article  PubMed  Google Scholar 

Zhou S-S, Jin J-P, Wang J-Q, Zhang Z-G, Freedman JH, Zheng Y, Cai L. MiRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–84. https://doi.org/10.1038/aps.2018.30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res. 2016;118:496–514. https://doi.org/10.1161/CIRCRESAHA.115.306573.

Article  CAS  PubMed  Google Scholar 

Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis–diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12:670–80. https://doi.org/10.1038/nrcardio.2015.108.

Article  PubMed  Google Scholar 

Bartel DP. MicroRNAs: Genomics, bogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

Article  CAS  PubMed  Google Scholar 

Johnson JL. Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascul Pharmacol. 2019;114:31–48. https://doi.org/10.1016/j.vph.2018.10.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Meng X, Zhang L. MicroRNAs and cardiac stem cells in heart development and disease. Drug Discov Today. 2019;24:233–40. https://doi.org/10.1016/j.drudis.2018.05.032.

Article  CAS  PubMed  Google Scholar 

Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101. https://doi.org/10.1038/nsmb1167.

Article  CAS  PubMed  Google Scholar 

Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–6. https://doi.org/10.1038/nature05983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. https://doi.org/10.1016/j.cell.2009.01.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Small EM, Olson EN. Pervasive roles of MicroRNAs in cardiovascular biology. Nature. 2011;469:336–42. https://doi.org/10.1038/nature09783.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, et al. Loss of cardiac MicroRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105:585–94. https://doi.org/10.1161/CIRCRESAHA.109.200451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan B, Wang H, Tan Y, Fu W. MicroRNAs in cardiovascular disease: small molecules but big roles. CTMC. 2019;19;1918–1947.https://doi.org/10.2174/1568026619666190808160241.

Ferreira LRP, Frade AF, Santos RHB, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA, Stolf NA, et al. MicroRNAs MiR-1, MiR-133a, MiR-133b, MiR-208a and MiR-208b are dysregulated in chronic Chagas disease cardiomyopathy. Int J Cardiol. 2014;175:409–17. https://doi.org/10.1016/j.ijcard.2014.05.019.

Article  PubMed  Google Scholar 

Besler C, Urban D, Watzka S, Lang D, Rommel K-P, Kandolf R, Klingel K, Thiele H, Linke A, Schuler G, et al. Endomyocardial MiR-133a levels correlate with myocardial inflammation, improved left ventricular function, and clinical outcome in patients with inflammatory cardiomyopathy: endomyocardial MiR-133a levels in inflammatory cardiomyopathy. Eur J Heart Fail. 2016;18:1442–51. https://doi.org/10.1002/ejhf.579.

Article  CAS  PubMed  Google Scholar 

Xu H-F, Ding Y-J, Shen Y-W, Xue A-M, Xu H-M, Luo C-L, Li B-X, Liu Y-L, Zhao Z-Q. MicroRNA- 1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem. 2012;362:141–8. https://doi.org/10.1007/s11010-011-1136-3.

Article  CAS  PubMed  Google Scholar 

Castoldi G, di Gioia CRT, Bombardi C, Catalucci D, Corradi B, Gualazzi MG, Leopizzi M, Mancini M, Zerbini G, Condorelli G, et al. MiR-133a regulates collagen 1A1: potential role of MiR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227:850–6. https://doi.org/10.1002/jcp.22939.

Article  CAS  PubMed  Google Scholar 

Shan H, Zhang Y, Lu Y, Zhang Y, Pan Z, Cai B, Wang N, Li X, Feng T, Hong Y, et al. Downregulation of MiR-133 and MiR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res. 2009;83:465–72. https://doi.org/10.1093/cvr/cvp130.

Article  CAS  PubMed  Google Scholar 

Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, et al. MiR-133 and MiR-30 regulate connective tissue growth factor: implications for a role of MicroRNAs in myocardial matrix remodeling. Circ Res. 2009;104:170–8. https://doi.org/10.1161/CIRCRESAHA.108.182535.

Article  CAS  PubMed  Google Scholar 

van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN. A family of MicroRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17:662–73. https://doi.org/10.1016/j.devcel.2009.10.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating nicroRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506. https://doi.org/10.1161/CIRCGENETICS.110.957415.

Article  PubMed  Google Scholar 

Goldberg L, Tirosh-Wagner T, Vardi A, Abbas H, Pillar N, Shomron N, Nevo-Caspi Y, Paret G. Circulating microRNAs: a potential biomarker for cardiac damage, inflammatory response, and left ventricular function recovery in pediatric viral myocarditis. J of Cardiovasc Trans Res. 2018;11:319–28. https://doi.org/10.1007/s12265-018-9814-0.

Article  Google Scholar 

Tong L, Lin L, Wu S, Guo Z, Wang T, Qin Y, Wang R, Zhong X, Wu X, Wang Y, et al. MiR-10a* up-regulates Coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. Nucleic Acids Res. 2013;41:3760–71. https://doi.org/10.1093/nar/gkt058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H-F, Gao X-T, Lin J-Y, Xu X-H, Hu J, Ding Y-J, Zhu S-H. MicroRNA-20b suppresses the expression of ZFP-148 in viral myocarditis. Mol Cell Biochem. 2017;429:199–210. https://doi.org/10.1007/s11010-017-2947-7.

Article  CAS  PubMed  Google Scholar 

Ye X, Hemida MG, Qiu Y, Hanson PJ, Zhang HM, Yang D. MiR-126 promotes Coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/β-catenin signal pathways. Cell Mol Life Sci. 2013;70:4631–44. https://doi.org/10.1007/s00018-013-1411-4.

Article  CAS  PubMed  Google Scholar 

Germano JF, Sawaged S, Saadaeijahromi H, Andres AM, Feuer R, Gottlieb RA, Sin J. Coxsackievirus B infection induces the extracellular release of MiR-590-5p, a proviral microRNA. Virology. 2019;529:169–76. https://doi.org/10.1016/j.virol.2019.01.025.

Article  CAS  PubMed  Google Scholar 

• Chen L, Hou X, Zhang M, Zheng Y, Zheng X, Yang Q, Li J, Gu N, Zhang M, Sun Y, et al. MicroRNA-223–3p modulates dendritic cell function and ameliorates experimental autoimmune myocarditis by targeting the NLRP3 inflammasome. Mol Immunol. 2020;117:73–83. https://doi.org/10.1016/j.molimm.2019.10.027. This study demonstrated that miR-223–3p expression was significantly lower in experimental autoimmune myocarditis in mice. MiR-223–3p is able to inhibit inflammasome expression, promoting the polarization of dendritic cells toward a tolerogenic phenotype, with reduced function. By this mechanism, miR-223–3p effectively regulates tolerance in autoimmune myocarditis.

Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, Summer G, Coort SLM, Hazebroek M, van Leeuwen R, et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res. 2012;111:415–25. https://doi.org/10.1161/CIRCRESAHA.112.267443.

Article  CAS  PubMed  Google Scholar 

Navarro IC, Ferreira FM, Nakaya HI, Baron MA, Vilar-Pereira G, Pereira IR, Silva AMG, Real JM, De Brito T, Chevillard C, et al. MicroRNA transcriptome profiling in heart of Trypanosoma cruzi-infected mice: parasitological and cardiological outcomes. PLoS Negl Trop Dis. 2015;9: e0003828. https://doi.org/10.1371/journal.pntd.0003828.

Liu YL, Wu W, Xue Y, Gao M, Yan Y, Kong Q, Pang Y, Yang F. MicroRNA-21 and -146b are involved in the pathogenesis of murine viral myocarditis by regulating TH-17 differentiation. Arch Virol. 2013;158:1953–63. https://doi.org/10.1007/s00705-013-1695-6.

Article 

留言 (0)

沒有登入
gif