Effect of a protein kinase B (Akt) inhibitor on the angiogenesis of HUVECs and corneal neovascularization

Beebe DC. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol. 2008; https://doi.org/10.1016/j.semcdb.2007.08.014.

Article  PubMed  Google Scholar 

Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol. 1998;43:245–69. https://doi.org/10.1016/s0039-6257(98)00035-6.

Article  CAS  PubMed  Google Scholar 

Abdelfattah NS, Amgad M, Zayed AA, et al. Clinical correlates of common corneal neovascular diseases: a literature review. Int J Ophthalmol. 2015;8:182–93. https://doi.org/10.3980/j.issn.2222-3959.2015.01.32.

Article  PubMed  PubMed Central  Google Scholar 

Cherry PM, Faulkner JD, Shaver RP, et al. Argon laser treatment of corneal neovascularization. Ann Ophthalmol. 1973;5:911–20.

CAS  PubMed  Google Scholar 

Reed JW, Fromer C, Klintworth GK. Induced corneal vascularization remission with argon laser therapy. Arch Ophthalmol. 1975;93:1017–9. https://doi.org/10.1001/archopht.1975.01010020797012.

Article  CAS  PubMed  Google Scholar 

Gomer CJ, Ferrario A, Hayashi N, et al. Molecular, cellular, and tissue responses following photodynamic therapy. Lasers Surg Med. 1988;8:450–63. https://doi.org/10.1002/lsm.1900080503.

Article  CAS  PubMed  Google Scholar 

Gore A, Horwitz V, Cohen M, et al. Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model. Exp Eye Res. 2018;171:183–91. https://doi.org/10.1016/j.exer.2018.03.010.

Article  CAS  PubMed  Google Scholar 

Peterson JS, Chen W, Libin BM, et al. Sustained ocular delivery of bevacizumab using densomeres in rabbits: effects on molecular integrity and bioactivity. Transl Vis Sci Technol. 2023;12:28. https://doi.org/10.1167/tvst.12.3.28.

Article  PubMed  PubMed Central  Google Scholar 

Al-Debasi T, Al-Bekairy A, Al-Katheri A, et al. Topical versus subconjunctival anti-vascular endothelial growth factor therapy (bevacizumab, ranibizumab and aflibercept) for treatment of corneal neovascularization. Saudi J Ophthalmol. 2017;31:99–105. https://doi.org/10.1016/j.sjopt.2017.02.008.

Article  PubMed  PubMed Central  Google Scholar 

Celenk M, Yildirim H, Tektemur A, et al. Effect of topical motesanib in experimental corneal neovascularization model. Int Ophthalmol. 2023; https://doi.org/10.1007/s10792-023-02685-3.

Article  PubMed  Google Scholar 

Gomes Souza L, Antonio Sousa-Junior A, Alves Santana Cintra B, et al. Pre-clinical safety of topically administered sunitinib-loaded lipid and polymeric nanocarriers targeting corneal neovascularization. Int J Pharm. 2023;635:122682. https://doi.org/10.1016/j.ijpharm.2023.122682.

Article  CAS  PubMed  Google Scholar 

Franke TF, Yang SI, Chan TO, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3‑kinase. Cell. 1995;81:727–36. https://doi.org/10.1016/0092-8674(95)90534-0.

Article  CAS  PubMed  Google Scholar 

Hemmings BA. PH domains—a universal membrane adapter. Science. 1997;275:1899. https://doi.org/10.1126/science.275.5308.1899.

Article  CAS  PubMed  Google Scholar 

Hemmings BA. PtdIns(3,4,5)P3 gets its message across. Science. 1997;277:534. https://doi.org/10.1126/science.277.5325.534.

Article  CAS  PubMed  Google Scholar 

Chen J, Li F, Xu Y, et al. Cholesterol modification of SDF-1-specific siRNA enables therapeutic targeting of angiogenesis through Akt pathway inhibition. Exp Eye Res. 2019;184:64–71. https://doi.org/10.1016/j.exer.2019.03.006.

Article  CAS  PubMed  Google Scholar 

Luo Z, Fujio Y, Kureishi Y, et al. Acute modulation of endothelial Akt/PKB activity alters nitric oxide-dependent vasomotor activity in vivo. J Clin Invest. 2000;106:493–9. https://doi.org/10.1172/JCI9419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papapetropoulos A, Garcia-Cardena G, Madri JA, et al. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest. 1997;100:3131–9. https://doi.org/10.1172/JCI119868.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murohara T, Asahara T, Silver M, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101:2567–78. https://doi.org/10.1172/JCI1560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger I, Stahl S, Rychkova N, et al. VEGF receptors on PC12 cells mediate transient activation of ERK1/2 and Akt: comparison of nerve growth factor and vascular endothelial growth factor. J Negat Results BioMed. 2006;5:8. https://doi.org/10.1186/1477-5751-5-8.

Article  PubMed  PubMed Central  Google Scholar 

Wang P, Tian XF, Rong JB, et al. Protein kinase B (akt) promotes pathological angiogenesis in murine model of oxygen-induced retinopathy. Acta Histochem Cytochem. 2011;44:103–11. https://doi.org/10.1267/ahc.10038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998;273:30336–43. https://doi.org/10.1074/jbc.273.46.30336.

Article  CAS  PubMed  Google Scholar 

Fujio Y, Guo K, Mano T, et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol. 1999;19:5073–82. https://doi.org/10.1128/MCB.19.7.5073.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101:660–7. https://doi.org/10.1161/01.cir.101.6.660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhan M, Han ZC. Phosphatidylinositide 3‑kinase/AKT in radiation responses. Histol Histopathol. 2004;19:915–23. https://doi.org/10.14670/HH-19.915.

Article  CAS  PubMed  Google Scholar 

Chen J, Somanath PR, Razorenova O, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11:1188–96. https://doi.org/10.1038/nm1307.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishiyama K, Takaji K, Kataoka K, et al. Id1 gene transfer confers angiogenic property on fully differentiated endothelial cells and contributes to therapeutic angiogenesis. Circulation. 2005;112:2840–50. https://doi.org/10.1161/CIRCULATIONAHA.104.516898.

Article  CAS  PubMed  Google Scholar 

Wang X, Ye H, Yang S, et al. Disulfiram exerts antifibrotic and anti-inflammatory therapeutic effects on perimysial orbital fibroblasts in graves’ orbitopathy. Int J Mol Sci. 2022; https://doi.org/10.3390/ijms23095261.

Article  PubMed  PubMed Central  Google Scholar 

Yang J, Feng S, Yi G, et al. Inhibition of RelA expression via RNA interference induces immune tolerance in a rat keratoplasty model. Mol Immunol. 2016;73:88–97. https://doi.org/10.1016/j.molimm.2016.03.014.

Article  CAS  PubMed  Google Scholar 

Sonoda Y, Streilein JW. Orthotopic corneal transplantation in mice—evidence that the immunogenetic rules of rejection do not apply. Transplantation. 1992;54:694–704. https://doi.org/10.1097/00007890-199210000-00026.

Article  CAS  PubMed  Google Scholar 

Seo M, Choi JS, Rho CR, et al. MicroRNA miR-466 inhibits lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci. 2015;22:3. https://doi.org/10.1186/s12929-014-0104-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nosov M, Wilk M, Morcos M, et al. Role of lentivirus-mediated overexpression of programmed death-ligand 1 on corneal allograft survival. Am J Transplant. 2012;12:1313–22. https://doi.org/10.1111/j.1600-6143.2011.03948.x.

Article  CAS  PubMed  Google Scholar 

Niederkorn JY. Immunology and immunomodulation of corneal transplantation. Int Rev Immunol. 2002;21:173–96. https://doi.org/10.1080/08830180212064.

Article  PubMed  Google Scholar 

Fan X, Qiu J, Yuan T, et al. Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation. Front Immunol. 2022;13:1090877. https://doi.org/10.3389/fimmu.2022.1090877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shakiba Y, Mansouri K, Arshadi D, et al. Corneal neovascularization: molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov. 2009;3:221–31. https://doi.org/10.2174/187221309789257450.

Article  CAS  PubMed  Google Scholar 

Liu G, Lu P, Li L, et al. Critical role of SDF-1alpha-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization. Mol Vis. 2011;17:2129–38.

CAS 

留言 (0)

沒有登入
gif