Culture of vibrating microtome tissue slices as a 3D model in biomedical research

Picollet-D’hahan N, Dolega ME, Liguori L, Marquette C, Le Gac S, Gidrol X, Martin DK. A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models. Trends Biotechnol. 2016;34:757–69. https://doi.org/10.1016/j.tibtech.2016.06.012.

Article  Google Scholar 

Jackson EL, Lu H. Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Camb). 2016;8:672–83. https://doi.org/10.1039/c6ib00039h.

Article  Google Scholar 

Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol. 2022;13:836480.

Article  Google Scholar 

van Os EA, Cools L, Eysackers N, Szafranska K, Smout A, Verhulst S, et al. Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials. 2022;290:121817.

Article  Google Scholar 

Turner DA, Baillie-Johnson P, Martinez AA. Organoids and the genetically encoded self-assembly of embryonic stem cells. BioEssays. 2016;38:181–91. https://doi.org/10.1002/bies.201500111.

Article  Google Scholar 

Sato T, Clevers H. SnapShot: Growing Organoids from Stem Cells. Cell. 2015;161:1700-1700.e1. https://doi.org/10.1016/j.cell.2015.06.028.

Article  Google Scholar 

Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–72. https://doi.org/10.1038/nbt.2989.

Article  Google Scholar 

Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. Adv Mater. 2022;34:e2107876.

Article  Google Scholar 

Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, et al. Integrated biosensors for monitoring microphysiological systems. Lab Chip. 2022;22:3801–16. https://doi.org/10.1039/d2lc00262k.

Article  Google Scholar 

Schneider MR, Oelgeschlaeger M, Burgdorf T, van Meer P, Theunissen P, Kienhuis AS, et al. Applicability of organ-on-chip systems in toxicology and pharmacology. Crit Rev Toxicol. 2021;51:540–54. https://doi.org/10.1080/10408444.2021.1953439.

Article  Google Scholar 

Park SE, Georgescu A, Huh D. Organoids-on-a-chip Science. 2019;364:960–5. https://doi.org/10.1126/science.aaw7894.

Article  Google Scholar 

Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Eng Part A. 2020;26:318–38. https://doi.org/10.1089/ten.TEA.2019.0298.

Article  Google Scholar 

Ramesh S, Harrysson OL, Rao PK, Tamayol A, Cormier DR, Zhang Y, Rivero IV. Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116.

Article  Google Scholar 

Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45. https://doi.org/10.1038/nrm2236.

Article  Google Scholar 

Warburg O. Versuche an Überlebendem Karcinomgewebe. Biochemische Zeitschrift. 1923:317–33.

Stadie WC, Riggs BC. Microtome for the preparation of tissue slices for metabolic studies of surviving tissues in vitro. J Biol Chem. 1944;154:687–90. https://doi.org/10.1016/S0021-9258(18)71901-7.

Article  Google Scholar 

McIlwain H, BuddlE HL. Techniques in tissue metabolism. I. A mechanical chopper. Biochem J. 1953;53:412–20. doi:https://doi.org/10.1042/bj0530412.

Mahler DJ, Humoller FL. Tissue chopper for biochemical studies. Anal Biochem. 1965;11:584–8. https://doi.org/10.1016/0003-2697(65)90078-3.

Article  Google Scholar 

Krumdieck CL, dos Santos JE, Ho KJ. A new instrument for the rapid preparation of tissue slices. Anal Biochem. 1980;104:118–23. https://doi.org/10.1016/0003-2697(80)90284-5.

Article  Google Scholar 

Brendel K, Fisher RL, Krumdieck CL, Gandolfi AJ. Precision-Cut Rat Liver Slices in Dynamic Organ Culture for Structure-Toxicity Studies. J Am Coll Toxicol. 1990;9:621–7. https://doi.org/10.3109/10915819009078767.

Article  Google Scholar 

Parrish AR, Gandolfi AJ, Brendel K. Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci. 1995;57:1887–901. https://doi.org/10.1016/0024-3205(95)02176-j.

Article  Google Scholar 

Lerche-Langrand C, Toutain HJ. Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology. 2000;153:221–53. https://doi.org/10.1016/s0300-483x(00)00316-4.

Article  Google Scholar 

de Graaf IAM, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, Groothuis GMM. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. 2010;5:1540–51. https://doi.org/10.1038/nprot.2010.111.

Article  Google Scholar 

Price RJ, Ball SE, Renwick AB, Barton PT, Beamand JA, Lake BG. Use of precision-cut rat liver slices for studies of xenobiotic metabolism and toxicity: comparison of the Krumdieck and Brendel tissue slicers. Xenobiotica. 1998;28:361–71. https://doi.org/10.1080/004982598239470.

Article  Google Scholar 

de Kanter R, Monshouwer M, Meijer DKF, Groothuis GMM. Precision-cut organ slices as a tool to study toxicity and metabolism of xenobiotics with special reference to non-hepatic tissues. Curr Drug Metab. 2002;3:39–59. https://doi.org/10.2174/1389200023338071.

Article  Google Scholar 

Henjakovic M, Sewald K, Switalla S, Kaiser D, Müller M, Veres TZ, et al. Ex vivo testing of immune responses in precision-cut lung slices. Toxicol Appl Pharmacol. 2008;231:68–76. https://doi.org/10.1016/j.taap.2008.04.003.

Article  Google Scholar 

Gähwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997;20:471–7. https://doi.org/10.1016/s0166-2236(97)01122-3.

Article  Google Scholar 

Schumacher K, Khong Y-M, Chang S, Ni J, Sun W, Yu H. rfusion culture improves the maintenance of cultured liver tissue slices. Tissue Eng. 2007;13:197–205. https://doi.org/10.1089/ten.2006.0046.

Article  Google Scholar 

van Midwoud PM, Groothuis GMM, Merema MT, Verpoorte E. Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol Bioeng. 2010;105:184–94. https://doi.org/10.1002/bit.22516.

Article  Google Scholar 

Church TW, Gold MG. Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method. Methods Mol Biol. 2021;2188:243–57. https://doi.org/10.1007/978-1-0716-0818-0_12.

Article  Google Scholar 

Humpel C. Organotypic Brain Slice Cultures. Curr Protoc Immunol. 2018;123:e59.

Article  Google Scholar 

Kvist G. Derivation of Adult Human Cortical Organotypic Slice Cultures for Coculture with Reprogrammed Neuronal Cells. Methods Mol Biol. 2021;2352:253–9. https://doi.org/10.1007/978-1-0716-1601-7_17.

Article  Google Scholar 

Liu J-J, Huang Y-J, Xiang L, Zhao F, Huang S-L. A novel method of organotypic spinal cord slice culture in rats. NeuroReport. 2017;28:1097–102. https://doi.org/10.1097/WNR.0000000000000892.

Article  Google Scholar 

Whitman MC, Bell JL, Nguyen EH, Engle EC. Ex Vivo Oculomotor Slice Culture from Embryonic GFP-Expressing Mice for Time-Lapse Imaging of Oculomotor Nerve Outgrowth. J Vis Exp. 2019. https://doi.org/10.3791/59911.

Article  Google Scholar 

Jaeger C, Sandu C, Malan A, Mellac K, Hicks D, Felder-Schmittbuhl M-P. Circadian organization of the rodent retina involves strongly coupled, layer-specific oscillators. FASEB J. 2015;29:1493–504. https://doi.org/10.1096/fj.14-261214.

Article  Google Scholar 

Khodair MA, Zarbin MA, Townes-Anderson E. Cyclic AMP prevents retraction of axon terminals in photoreceptors prepared for transplantation: an in vitro study. Invest Ophthalmol Vis Sci. 2005;46:967–73. https://doi.org/10.1167/iovs.04-0579.

Article  Google Scholar 

Mack AF, Fernald RD. Thin slices of teleost retina continue to grow in culture. J Neurosci Methods. 1991;36:195–202. https://doi.org/10.1016/0165-0270(91)90045-2.

Article  Google Scholar 

Feigenspan A, Bormann J. Modulation of GABAC receptors in rat retinal bipolar cells by protein kinase C. J Physiol. 1994;481(Pt 2):325–30. https://doi.org/10.1113/jphysiol.1994.sp020442.

Article  Google Scholar 

Gong Q, Liu WL, Srodon M, Foster TD, Shipley MT. Olfactory epithelial organotypic slice cultures: a useful tool for investigating olfactory neural development. Int J Dev Neurosci. 1996;14:841–52. https://doi.org/10.1016/S0736-5748(96)00056-1.

Article  Google Scholar 

Watson SA, Scigliano M, Bardi I, Ascione R, Terracciano CM, Perbellini F. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nat Protoc. 2017;12:2623–39. https://doi.org/10.1038/nprot.2017.139.

Article  Google Scholar 

Qiao Y, Dong Q, Li B, Obaid S, Miccile C, Yin RT, et al. Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. Prog Biophys Mol Biol. 2019;144:139–50. https://doi.org/10.1016/j.pbiomolbio.2018.06.001.

Article  Google Scholar 

Ou Q, Jacobson Z, Abouleisa RRE, Tang X-L, Hindi SM, Kumar A, et al. Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circ Res. 2019;125:628–42. https://doi.org/10.1161/CIRCRESAHA.119.314996.

Article  Google Scholar 

Liu Z, Klose K, Neuber S, Jiang M, Gossen M, Stamm C. Comparative analysis of adeno-associated virus serotypes for gene transfer in organotypic heart slices. J Transl Med. 2020;18:437. https://doi.org/10.1186/s12967-020-02605-4.

Article  Google Scholar 

Brumback BD, Dmytrenko O, Robinson AN, Bailey AL, Ma P, Liu J, et al. Human Cardiac Pericytes are Susceptible to SARS-CoV-2 Infection. JACC Basic Transl Sci. 2022. https://doi.org/10.1016/j.jacbts.2022.09.001.

Article  Google Scholar 

Hamers J, Sen P, Merkus D, Seidel T, Lu K, Dendorfer A. Preparation of Human Myocardial Tissue for Long-Term Cultivation. J Vis Exp. 2022. https://doi.org/10.3791/63964.

Article  Google Scholar 

Maselli D, Matos RS, Johnson RD, Chiappini C, Camelliti P, Campagnolo P. Epicardial slices: an innovative 3D organotypic model to study epicardial cell physiology and activation. NPJ Regen Med. 2022;7:7. https://doi.org/10.1038/s41536-021-00202-7.

Article  Google Scholar 

Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S, Ray DW, Loudon ASI. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology. 2009;150:268–76. https://doi.org/10.1210/en.2008-0638.

Article  Google Scholar 

Burgstaller G, Vierkotten S, Lindner M, Königshoff M, Eickelberg O. Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue. Am J Physiol Lung Cell Mol Physiol. 2015;309:L323–32. https://doi.org/10.1152/ajplung.00061.2015.

Article  Google Scholar 

Uhl FE, Vierkotten S, Wagner DE, Burgstaller G, Costa R, Koch I, et al. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. Eur Respir J. 2015;46:1150–66. https://doi.org/10.1183/09031936.00183214.

Article  Google Scholar 

Li G, Cohen JA, Martines C, Ram-Mohan S, Brain JD, Krishnan R, et al. Preserving Airway Smooth Muscle Contraction in Precision-Cut Lung Slices. Sci Rep. 2020;10:6480. https://doi.org/10.1038/s41598-020-63225-y.

Article 

留言 (0)

沒有登入
gif