Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers

Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

Article  CAS  PubMed  Google Scholar 

Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley, 1995).

Service, R. F. How far can we push chemical self-assembly? Science 309, 95 (2005).

Article  CAS  PubMed  Google Scholar 

Wehner, M. & Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat. Rev. Chem. 4, 38–53 (2020).

Article  CAS  Google Scholar 

Hartlieb, M., Mansfield, E. D. H. & Perrier, S. A guide to supramolecular polymerizations. Polym. Chem. 11, 1083–1110 (2020).

Article  CAS  Google Scholar 

Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

Article  CAS  PubMed  Google Scholar 

Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

Article  CAS  PubMed  Google Scholar 

Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300–3307 (2015).

Article  CAS  PubMed  Google Scholar 

Kemper, B. et al. Kinetically controlled stepwise self-assembly of AuI-metallopeptides in water. J. Am. Chem. Soc. 140, 534–537 (2018).

Article  CAS  PubMed  Google Scholar 

Besenius, P. Controlling supramolecular polymerization through multicomponent self-assembly. J. Polym. Sci., Part A: Polym. Chem. 55, 34–78 (2017).

Article  CAS  Google Scholar 

Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

Article  CAS  PubMed  Google Scholar 

Dong, Y. et al. Multistep molecular and macromolecular assembly for the creation of complex nanostructures. Chem. Phys. Rev. 3, 021305 (2022).

Article  Google Scholar 

Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

Article  CAS  PubMed  Google Scholar 

Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

Article  CAS  PubMed  Google Scholar 

Adelizzi, B., Van Zee, N. J., de Windt, L. N. J., Palmans, A. R. A. & Meijer, E. W. Future of supramolecular copolymers unveiled by reflecting on covalent copolymerization. J. Am. Chem. Soc. 141, 6110–6121 (2019).

Article  CAS  PubMed  Google Scholar 

Jung, S. H., Bochicchio, D., Pavan, G. M., Takeuchi, M. & Sugiyasu, K. A block supramolecular polymer and its kinetically enhanced stability. J. Am. Chem. Soc. 140, 10570–10577 (2018).

Article  CAS  PubMed  Google Scholar 

Wagner, W., Wehner, M., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by seeded living polymerization of perylene bisimides. J. Am. Chem. Soc. 141, 12044–12054 (2019).

Article  CAS  PubMed  Google Scholar 

Sarkar, A., Sasmal, R., Das, A., Agasti, S. S. & George, S. J. Kinetically controlled synthesis of supramolecular block copolymers with narrow dispersity and tunable block lengths. Chem. Commun. 57, 3937–3940 (2021).

Article  CAS  Google Scholar 

Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

Article  CAS  Google Scholar 

Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

Article  CAS  Google Scholar 

Zheng, Y. et al. Supramolecular thiophene nanosheets. Angew. Chem. Int. Ed. 52, 4845–4848 (2013).

Article  CAS  Google Scholar 

Ghosh, S., Philips, D. S., Saeki, A. & Ajayaghosh, A. Nanosheets of an organic molecular assembly from aqueous medium exhibit high solid-state emission and anisotropic charge-carrier mobility. Adv. Mater. 29, 1605408 (2017).

Article  Google Scholar 

Lin, Y. et al. Residue-specific solvation-directed thermodynamic and kinetic control over peptide self-assembly with 1D/2D structure selection. ACS Nano 13, 1900–1909 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Insua, I. & Montenegro, J. 1D to 2D self-assembly of cyclic peptides. J. Am. Chem. Soc. 142, 300–307 (2020).

Article  CAS  PubMed  Google Scholar 

Fukui, T. et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 9, 493–499 (2017).

Article  CAS  PubMed  Google Scholar 

Sasaki, N., Yuan, J., Fukui, T., Takeuchi, M. & Sugiyasu, K. Control over the aspect ratio of supramolecular nanosheets by molecular design. Chem. Eur. J. 26, 7840–7846 (2020).

Article  CAS  PubMed  Google Scholar 

Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 3578 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Brendel, J. C. & Schacher, F. H. Block copolymer self-assembly in solution—Quo Vadis? Chem. Asian J. 13, 230–239 (2018).

Article  CAS  PubMed  Google Scholar 

Karayianni, M. & Pispas, S. Block copolymer solution self-assembly: recent advances, emerging trends, and applications. J. Polym. Sci. 59, 1874–1898 (2021).

Article  CAS  Google Scholar 

Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

Article  CAS  PubMed  Google Scholar 

Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

Article  CAS  PubMed  Google Scholar 

Ganda, S. & Stenzel, M. H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 101, 101195 (2020).

Article  CAS  Google Scholar 

Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

Article  CAS  PubMed  Google Scholar 

Hudson, Z. M., Lunn, D. J., Winnik, M. A. & Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 5, 3372 (2014).

Article  PubMed  Google Scholar 

Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

Article  CAS  PubMed  Google Scholar 

Merg, A. D. et al. Seeded heteroepitaxial growth of crystallizable collagen triple helices: engineering multifunctional two-dimensional core-shell nanostructures. J. Am. Chem. Soc. 141, 20107–20117 (2019).

Article  CAS  PubMed  Google Scholar 

Yang, S., Kang, S.-Y. & Choi, T.-L. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat. Commun. 12, 2602 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitamoto, Y. et al. One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nat. Commun. 10, 4578 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Li, Y. et al. Corner-, edge-, and facet-controlled growth of nanocrystals. Sci. Adv. 7, eabf1410 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 583, 400–405 (2020).

Article  CAS  PubMed  Google Scholar 

Datta, S., Takahashi, S. & Yagai, S. Nanoengineering of curved supramolecular polymers: toward single-chain mesoscale materials. Acc. Mater. Res. 3, 259–271 (2022).

Article  CAS  Google Scholar

留言 (0)

沒有登入
gif