Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation

Ma, L. et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8, 1800348 (2018).

Article  Google Scholar 

Liu, T. et al. Current challenges and routes forward for nonaqueous lithium–air batteries. Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00545 (2020).

Kwak, W. J. et al. Lithium–oxygen batteries and related systems: potential, status, and future. ACS Appl. Mater. Interfaces 120, 6626–6683 (2020).

CAS  Google Scholar 

Wang, D., Mu, X., He, P. & Zhou, H. Materials for advanced Li–O2 batteries: explorations, challenges and prospects. Mater. Today 26, 87–99 (2019).

Article  CAS  Google Scholar 

Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).

Article  CAS  PubMed  Google Scholar 

Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ. Sci. 6, 2518–2528 (2013).

Article  CAS  Google Scholar 

Li, F. et al. Superior performance of a Li–O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv. Energy Mater. 5, 1500294 (2015).

Article  Google Scholar 

Tan, P., Wei, Z. H., Shyy, W., Zhao, T. S. & Zhu, X. B. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy Environ. Sci. 9, 1783–1793 (2016).

Article  CAS  Google Scholar 

Park, J.-B., Lee, S. H., Jung, H.-G., Aurbach, D. & Sun, Y.-K. Redox mediators for Li–O2 batteries: status and perspectives. Adv. Mater. https://doi.org/10.1002/adma.201704162 (2018).

McCloskey, B. D. & Addison, D. A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li–O2 batteries. ACS Catal. 7, 772–778 (2017).

Article  CAS  Google Scholar 

Liu, T. et al. The effect of water on quinone redox mediators in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 140, 1428–1437 (2018).

Article  CAS  PubMed  Google Scholar 

Lacey, M. J., Frith, J. T. & Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74–76 (2013).

Article  CAS  Google Scholar 

Chase, G. et al. Soluble oxygen evolving catalysts for rechargeable metal–air batteries. WO patent 2,011,133 (2011).

Bergner, B. J., Schürmann, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

Article  CAS  PubMed  Google Scholar 

Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

Article  PubMed  Google Scholar 

Lim, H.-D. et al. Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016).

Article  CAS  Google Scholar 

Kundu, D., Black, R., Adams, B. & Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, T., Liao, K., He, P. & Zhou, H. A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016).

Article  CAS  Google Scholar 

Yao, K. P. C. et al. Utilization of cobalt bis(terpyridine) metal complex as soluble redox, ediator in Li–O2 batteries. J. Phys. Chem. C 120, 16290–16297 (2016).

Article  CAS  Google Scholar 

Mourad, E. et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries. Energy Environ. Sci. 2, 2559–2568 (2019).

Article  Google Scholar 

Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

Article  CAS  Google Scholar 

Schurmann, A., Luerßen, B., Mollenhauer, D., Janek, J. & Der, D. S. Singlet oxygen in electrochemical cells: a critical review of literature and theory. Chem. Rev. 121, 12445–12464 (2021).

Article  PubMed  Google Scholar 

Wandt, J., Jakes, P., Granwehr, J., Gasteiger, H. A. & Eichel, R. A. Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55, 6892–6895 (2016).

Article  CAS  Google Scholar 

Bawol, P. P. et al. A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the Li–O2 cell. Phys. Chem. Chem. Phys. 20, 21447–21456 (2018).

Article  CAS  PubMed  Google Scholar 

Ko, Y. et al. A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. J. Mater. Chem. A 7, 6491–6498 (2019).

Article  CAS  Google Scholar 

Liang, Z., Zou, Q., Xie, J. & Lu, Y.-C. Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy Environ. Sci. 13, 2870–2877 (2020).

Article  CAS  Google Scholar 

Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9, 767 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Petit, Y. K. et al. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat. Chem. https://doi.org/10.1038/s41557-021-00643-z (2021).

Kwak, W. J. et al. Oxidation stability of organic redox mediators as mobile catalysts in lithium–oxygen batteries. ACS Energy Lett. 5, 2122–2129 (2020).

Article  CAS  Google Scholar 

Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

Article  CAS  Google Scholar 

Bryantsev, V. S., Blanco, M. & Faglioni, F. Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions. J. Phys. Chem. A 114, 8165–8169 (2010).

Article  CAS  PubMed  Google Scholar 

Unwin, P. R. & Bard, A. J. Scanning electrochemical microscopy. 9. Theory and application of the feedback mode to the measurement of following chemical reaction rates in electrode processes. J. Phys. Chem. 95, 7814–7824 (1991).

Article  CAS  Google Scholar 

Arroyo-Currás, N. & Bard, A. J. Iridium oxidation as observed by surface interrogation scanning electrochemical microscopy. J. Phys. Chem. C 119, 8147–8154 (2015).

Article  Google Scholar 

Rodríguez-López, J., Minguzzi, A. & Bard, A. J. Reaction of various reductants with oxide films on Pt electrodes as studied by the surface interrogation mode of scanning electrochemical microscopy (SI-SECM): possible validity of a Marcus relationship. J. Phys. Chem. C 114, 18645–18655 (2010).

Article  Google Scholar 

Miller, J. R., Beitz, J. V. & Huddleston, R. K. Effect of free energy on rates of electron transfer between molecules. J. Am. Chem. Soc. 106, 5057–5068 (1984).

Article  CAS  Google Scholar 

Krueger, B., Rucker, K. K. & Wittstock, G. Redox mediators for faster lithium peroxide oxidation in a lithium–oxygen cell: a scanning electrochemical microscopy study. ACS Appl. Energy Mater. 5, 3724–3733 (2022).

Article  CAS  Google Scholar 

Lefrou, C. & Cornut, R. Analytical expressions for quantitative scanning electrochemical microscopy (SECM). Chemphyschem 11, 547–556 (2010).

Article  CAS  PubMed  Google Scholar 

Cornut, R. & Lefrou, C. New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate. J. Electroanal. Chem. 621, 178–184 (2008).

Article  CAS  Google Scholar 

Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–701 (1965).

Article  CAS  Google Scholar 

Nakabayashi, S., Itoh, K., Fujishima, A. & Honda, K. Electron transfer rates in highly exothermic reactions on semiconductor–electrolyte interfaces, and the deuterium isotope effect. J. Phys. Chem. 87, 5301–5303 (1983).

Article  CAS  Google Scholar 

Hamann, T. W., Gstrein, F., Brunschwig, B. S. & Lewis, N. S. Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts. J. Am. Chem. Soc. 127, 7815–7824 (2005).

Article  CAS  PubMed  Google Scholar 

Gerbig, O., Merkle, R. & Maier, J. Electron and ion transport in Li2O2. Adv. Mater. 25, 3129–3133 (2013).

Article  CAS  PubMed  Google Scholar 

Barthel, J. & Feuerlein, F. Dielectric properties of propylene carbonate-1,2-dimethoxyethane mixtures and their electrolyte solutions of NaClO4 and Bu4NClO4. Z. Phys. Chem. 148, 157–170 (1986).

Article  CAS  Google Scholar 

Meini, S. et al. Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Phys. Chem. Chem. Phys. 15, 11478–11493 (2013).

Article  CAS  PubMed  Google Scholar 

McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

Article  CAS  P

留言 (0)

沒有登入
gif