Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance

Dale, B. M., Brown, M. A., Semelka, R. C. & Brown, M. A. MRI: Basic Principles and Applications 5th edn (John Wiley & Sons, 2015).

Nikolaou, P., Goodson, B. M. & Chekmenev, E. Y. NMR hyperpolarization techniques for biomedicine. Chem. Eur. J. 21, 3156–3166 (2015).

Article  CAS  PubMed  Google Scholar 

Keshari, K. R. & Wilson, D. M. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem. Soc. Rev. 43, 1627–1659 (2014).

Article  CAS  PubMed  Google Scholar 

Meersmann, T & Brunner, E. Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications (Royal Society of Chemistry, 2015).

Schröder, L. in Hyperpolarized and Inert Gas MRI (eds Albert, M. S. & Hane, F. T.) 263–277 (Academic Press, 2017).

Hövener, J.-B. et al. Parahydrogen-based hyperpolarization for biomedicine. Angew. Chem. Int. Ed. 57, 11140–11162 (2018).

Article  Google Scholar 

Sherry, A. D. & Woods, M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng. 10, 391–411 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

Article  CAS  PubMed  Google Scholar 

Angelovski, G. Heading toward macromolecular and nanosized bioresponsive MRI probes for successful functional imaging. Acc. Chem. Res. 50, 2215–2224 (2017).

Article  CAS  PubMed  Google Scholar 

Li, H. & Meade, T. J. Molecular magnetic resonance imaging with Gd(iii)-based contrast agents: challenges and key advances. J. Am. Chem. Soc. 141, 17025–17041 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, H., Frey, A. M. & Jasanoff, A. Molecular fMRI of neurochemical signaling. J. Neurosci. Meth. 364, 109372 (2021).

Article  CAS  Google Scholar 

Kondo, Y., Nonaka, H., Takakusagi, Y. & Sando, S. Design of nuclear magnetic resonance molecular probes for hyperpolarized bioimaging. Angew. Chem. Int. Ed. 60, 14779–14799 (2021).

Article  CAS  Google Scholar 

The top 10 causes of death. World Health Organization https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (2020).

Nelson, S. J. et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5, 198ra108 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Ardenkjær-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Doura, T., Hata, R., Nonaka, H., Ichikawa, K. & Sando, S. Design of a 13C magnetic resonance probe using a deuterated methoxy group as a long-lived hyperpolarization unit. Angew. Chem. Int. Ed. 51, 10114–10117 (2012).

Article  CAS  Google Scholar 

Lippert, A. R., Keshari, K. R., Kurhanewicz, J. & Chang, C. J. A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wibowo, A., Park, J. M., Liu, S.-C., Khosla, C. & Spielman, D. M. Real-time in vivo detection of H2O2 using hyperpolarized 13C-thiourea. ACS Chem. Biol. 12, 1737–1742 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jindal, A. K. et al. Hyperpolarized 89Y complexes as pH sensitive NMR probes. J. Am. Chem. Soc. 132, 1784–1785 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hata, R., Nonaka, H., Takakusagi, Y., Ichikawa, K. & Sando, S. Design of a hyperpolarized 15N NMR probe that induces a large chemical-shift change upon binding of calcium ions. Chem. Commun. 51, 12290–12292 (2015).

Article  CAS  Google Scholar 

Mishra, A., Pariani, G., Oerther, T., Schwaiger, M. & Westmeyer, G. G. Hyperpolarized multi-metal 13C-sensors for magnetic resonance imaging. Anal. Chem. 88, 10790–10794 (2016).

Article  CAS  PubMed  Google Scholar 

Nonaka, H. et al. A platform for designing hyperpolarized magnetic resonance chemical probes. Nat. Commun. 4, 2441 (2013).

Article  Google Scholar 

Hundshammer, C. et al. Hyperpolarized amino acid derivatives as multivalent magnetic resonance pH sensor molecules. Sensors 18, 600 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Nishihara, T. et al. A strategy to design hyperpolarized 13C magnetic resonance probes using [1-13C]α-amino acid as a scaffold structure. Chem. Asian J. 12, 949–953 (2017).

Article  CAS  PubMed  Google Scholar 

Düwel, S. et al. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid. Nat. Commun. 8, 15126 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

Article  CAS  PubMed  Google Scholar 

Hundshammer, C. et al. Deuteration of hyperpolarized 13C-labeled zymonic acid enables sensitivity-enhanced dynamic MRI of pH. ChemPhysChem 18, 2422–2425 (2017).

Article  CAS  PubMed  Google Scholar 

Korenchan, D. E. et al. Dicarboxylic acids as pH sensors for hyperpolarized 13C magnetic resonance spectroscopic imaging. Analyst 142, 1429–1433 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suh, E. H., Park, J. M., Lumata, L., Sherry, A. D. & Kovacs, Z. Hyperpolarized 15N-labeled, deuterated tris(2-pyridylmethyl)amine as an MRI sensor of freely available Zn2+. Commun. Chem. 3, 185 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, S. et al. Amino acid-derived sensors for specific Zn2+ detection using hyperpolarized 13C magnetic resonance spectroscopy. Chem. Eur. J. 25, 11842–11846 (2019).

Article  CAS  PubMed  Google Scholar 

Lee, Y., Zeng, H., Ruedisser, S., Gossert, A. D. & Hilty, C. Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J. Am. Chem. Soc. 134, 17448–17451 (2012).

Article  CAS  PubMed  Google Scholar 

Pinon, A. C., Capozzi, A. & Ardenkjær-Larsen, J. H. Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. Magn. Reson. Mater. Phys. Biol. Med. 34, 5–23 (2021).

Article  CAS  Google Scholar 

Khan, A. S. et al. Enabling clinical technologies for hyperpolarized 129xenon magnetic resonance imaging and spectroscopy. Angew. Chem. Int. Ed. 60, 22126–22147 (2021).

Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 630–635 (2014).

Article  Google Scholar 

Zemerov, S. D. & Dmochowski, I. J. Cryptophane–xenon complexes for 129Xe MRI applications. RSC Adv. 11, 7693–7703 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riggle, B. A., Wang, Y. & Dmochowski, I. J. A. A “smart” 129Xe NMR biosensor for pH-dependent cell labeling. J. Am. Chem. Soc. 137, 5542–5548 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jayapaul, J. & Schröder, L. Probing reversible guest binding with hyperpolarized 129Xe-NMR: characteristics and applications for cucurbit[n]urils. Molecules 25, 957 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotera, N. et al. A sensitive zinc-activated 129Xe MRI probe. Angew. Chem. Int. Ed. 51, 4100–4103 (2012).

Article  CAS  Google Scholar 

Schröder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314, 446–449 (2006).

Article  PubMed  Google Scholar 

Chambers, J. M. et al. Cryptophane zenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J. Am. Chem. Soc. 131, 563–569 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witte, C. et al. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans. Angew. Chem. Int. Ed. 54, 2806–2810 (2015).

Article  CAS  Google Scholar 

Schlundt, A. et al. A xenon-129 biosensor for monitoring MHC–peptide interactions. Angew. Chem. Int. Ed. 48, 4142–4145 (2009).

Article  CAS  Google Scholar 

Klass, S. H. et al. Rotaxane probes for the detection of hydrogen peroxide by 129Xe hyperCEST NMR spectroscopy. Angew. Chem. Int. Ed. 58, 9948–9953 (2019).

留言 (0)

沒有登入
gif