The role of m6A methylation in therapy resistance in cancer

Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and mortality in China, 2016. J Natl Cancer Cent. 2022;2(1):1–9. https://doi.org/10.1016/j.jncc.2022.02.002.

Article  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

Article  PubMed  Google Scholar 

Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16(1):3–10. https://doi.org/10.2174/138161210789941847.

Article  CAS  PubMed  Google Scholar 

Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9. https://doi.org/10.7150/ijms.3635.

Article  PubMed  PubMed Central  Google Scholar 

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of Cancer Drug Resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–48. https://doi.org/10.15171/apb.2017.041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 2008;58(6):261–4. https://doi.org/10.1055/s-0031-1296504.

Article  CAS  PubMed  Google Scholar 

Huang D, Duan H, Huang H, Tong X, Han Y, Ru G, et al. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci Rep. 2016;6:20502. https://doi.org/10.1038/srep20502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quintás-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16(2):122–31. https://doi.org/10.1177/107327480901600204.

Article  PubMed  Google Scholar 

Kumar A, Fernandez-Capetillo O, Carrera AC. Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A. 2010;107(16):7491–6. https://doi.org/10.1073/pnas.0914242107.

Article  PubMed  PubMed Central  Google Scholar 

Jang NY, Kim DH, Cho BJ, Choi EJ, Lee JS, Wu HG, et al. Radiosensitization with combined use of olaparib and PI-103 in triple-negative breast cancer. BMC Cancer. 2015;15:89. https://doi.org/10.1186/s12885-015-1090-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–23. https://doi.org/10.1038/nature03097.

Article  CAS  PubMed  Google Scholar 

Landsverk KS, Patzke S, Rein ID, Stokke C, Lyng H, De Angelis PM, et al. Three independent mechanisms for arrest in G2 after ionizing radiation. Cell Cycle. 2011;10(5):819–29. https://doi.org/10.4161/cc.10.5.14968.

Article  CAS  PubMed  Google Scholar 

Vlatkovic T, Veldwijk MR, Giordano FA, Herskind C. Targeting cell cycle checkpoint kinases to overcome intrinsic Radioresistance in Brain Tumor cells. Cancers (Basel). 2022;14(3). https://doi.org/10.3390/cancers14030701.

Deckbar D, Jeggo PA, Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 2011;46(4):271–83. https://doi.org/10.3109/10409238.2011.575764.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82. https://doi.org/10.1016/j.ccr.2006.11.020.

Article  CAS  PubMed  Google Scholar 

Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622):1155–9. https://doi.org/10.1126/science.1082504.

Article  CAS  PubMed  Google Scholar 

Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ, Chakraborty S. Hypoxic tumor microenvironment: implications for cancer therapy. Exp Biol Med (Maywood). 2020;245(13):1073–86. https://doi.org/10.1177/1535370220934038.

Article  CAS  PubMed  Google Scholar 

LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech. 2018;11(4). https://doi.org/10.1242/dmm.029447.

Ammirante M, Shalapour S, Kang Y, Jamieson CA, Karin M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci U S A. 2014;111(41):14776–81. https://doi.org/10.1073/pnas.1416498111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harada H, Kizaka-Kondoh S, Li G, Itasaka S, Shibuya K, Inoue M, et al. Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene. 2007;26(54):7508–16. https://doi.org/10.1038/sj.onc.1210556.

Article  CAS  PubMed  Google Scholar 

Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77. https://doi.org/10.1016/s1534-5807(04)00099-1.

Article  CAS  PubMed  Google Scholar 

Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34. https://doi.org/10.1038/nrc1692.

Article  CAS  PubMed  Google Scholar 

Chen X, Wang P, Guo F, Wang X, Wang J, Xu J, et al. Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition. Int J Radiat Biol. 2017;93(8):764–70. https://doi.org/10.1080/09553002.2017.1325025.

Article  CAS  PubMed  Google Scholar 

Ohata Y, Shimada S, Akiyama Y, Mogushi K, Nakao K, Matsumura S, et al. Acquired Resistance with epigenetic alterations under long-term antiangiogenic therapy for Hepatocellular Carcinoma. Mol Cancer Ther. 2017;16(6):1155–65. https://doi.org/10.1158/1535-7163.Mct-16-0728.

Article  CAS  PubMed  Google Scholar 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149(7):1635–46. https://doi.org/10.1016/j.cell.2012.05.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS, Zou C. RNA methylation and cancer treatment. Pharmacol Res. 2021;174:105937. https://doi.org/10.1016/j.phrs.2021.105937.

Article  CAS  PubMed  Google Scholar 

Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19(1):88. https://doi.org/10.1186/s12943-020-01204-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21(1):37–50. https://doi.org/10.1038/s41568-020-00308-y.

Article  CAS  PubMed  Google Scholar 

Nie S, Zhang L, Liu J, Wan Y, Jiang Y, Yang J, et al. ALKBH5-HOXA10 loop-mediated JAK2 m6A demethylation and cisplatin resistance in epithelial ovarian cancer. J Exp Clin Cancer Res. 2021;40(1):284. https://doi.org/10.1186/s13046-021-02088-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, et al. ALKBH5 inhibited cell proliferation and sensitized bladder Cancer cells to cisplatin by m6A-CK2α-Mediated glycolysis. Mol Ther Nucleic Acids. 2021;23:27–41. https://doi.org/10.1016/j.omtn.2020.10.031.

Article  CAS  PubMed  Google Scholar 

Zhang X, Yang X, Yang C, Li P, Yuan W, Deng X, et al. Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway. Oncotarget. 2016;7(52):87361–72. https://doi.org/10.18632/oncotarget.13571.

Article  PubMed  PubMed Central  Google Scholar 

Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK, et al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m(6)A-demethylation of FOXM1 and NANOG. Apoptosis. 2020;25(3–4):233–46. https://doi.org/10.1007/s10495-020-01591-8.

Article  CAS  PubMed  Google Scholar 

Wei W, Sun J, Zhang H, Xiao X, Huang C, Wang L, et al. Circ0008399 Interaction with WTAP promotes Assembly and Activity of the m(6)a methyltransferase complex and promotes cisplatin resistance in bladder Cancer. Cancer Res. 2021;81(24):6142–56. https://doi.org/10.1158/0008-5472.Can-21-1518.

Article  CAS  PubMed  Google Scholar 

Ma H, Shen L, Yang H, Gong H, Du X, Li J. m6A methyltransferase Wilms’ tumor 1-associated protein facilitates cell proliferation and cisplatin resistance in NK/T cell lymphoma by regulating dual-specificity phosphatases 6 expression via m6A RNA methylation. IUBMB Life. 2021;73(1):108–17. https://doi.org/10.1002/iub.2410.

Article  CAS  PubMed  Google Scholar 

Gao Y, Li H, Han Q, Li Y, Wang T, Huang C, et al. Overexpression of DUSP6 enhances chemotherapy-resistance of ovarian epithelial cancer by regulating the ERK signaling pathway. J Cancer. 2020;11(11):3151–64. https://doi.org/10.7150/jca.37267.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif