Association between muscle strength and mass and bone mineral density in the US general population: data from NHANES 1999–2002

Kanis JA, Mccloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis Int. 2013;24(1):23–57.

Article  CAS  Google Scholar 

Guo J, Huang Y, Bian S, Zhao C, Jin Y, Yu D, Wu X, Zhang D, Cao W, Jing F, Chen G. Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005–2010. Environ Pollut. 2018;240:209–18.

Article  CAS  PubMed  Google Scholar 

Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.

Article  PubMed  Google Scholar 

Varacallo MA, Fox EJ, Paul EM, Hassenbein SE, Warlow PM. Patients’ response toward an automated orthopedic osteoporosis intervention program. Geriatr Orthop Surg. 2013;4(3):89–98.

Article  Google Scholar 

Varacallo M, Seaman TJ, Jandu JS, Pizzutillo P. Osteopenia. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2022.

Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. New Engl J Med. 2016;374(3):254–62.

Article  CAS  PubMed  Google Scholar 

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

Article  PubMed  Google Scholar 

Ahedi H, Aitken D, Scott D, Blizzard L, Cicuttini F, Jones G. The association between hip muscle cross-sectional area, muscle strength, and bone mineral density. Calcif Tissue Int. 2014;95(1):64–72.

Article  CAS  PubMed  Google Scholar 

Zhou Z, Zheng L, Wei D, Ye M, Li X. Muscular strength measurements indicate bone mineral density loss in postmenopausal women. Clin Interv Aging. 2013;8:1451–9.

Article  PubMed  PubMed Central  Google Scholar 

Qin H, Jiao W. Correlation of muscle mass and bone mineral density in the NHANES US general population, 2017–2018. Medicine. 2022;101(39):e30735.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan J, Cubukcu S, Sepici V. Relationship between bone mineral density of the proximal femur and strength of hip muscles in postmenopausal women. Am J Phys Med Rehab. 1998;77(6):477–82.

Article  CAS  Google Scholar 

Kapus O, Gaba A, Lehnert M. Relationships between bone mineral density, body composition, and isokinetic strength in postmenopausal women. Bone Rep. 2020;12:100255.

Article  PubMed Central  Google Scholar 

Nevitt MC, Cummings SR, Kidd S, Black D. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA J Am Med Assoc. 1989;261(18):2663–8.

Article  CAS  Google Scholar 

Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52(7):1121–9.

Article  Google Scholar 

Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.

Article  CAS  Google Scholar 

Zipf G, Chiappa M, Porter KS, Ostchega Y, Lewis BG, Dostal J. National health and nutrition examination survey: plan and operations, 1999–2010. Vital Health Stat 1. 2013;56:1–37.

Google Scholar 

NHANES 1999–2000: Muscle strength data documentation, codebook, and frequencies. https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/MSX.htm. In.

Chen L, Nelson DR, Zhao Y, Cui Z, Johnston JA. Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. Bmc Geriatr. 2013;13:74.

Article  PubMed Central  Google Scholar 

Kuo HK, Leveille SG, Yen CJ, Chai HM, Chang CH, Yeh YC, Yu YH, Bean JF. Exploring how peak leg power and usual gait speed are linked to late-life disability: data from the National Health and Nutrition Examination Survey (NHANES), 1999–2002. Am J Phys Med Rehab. 2006;85(8):650–8.

Article  Google Scholar 

Rossato LT, de Branco F, Azeredo CM, Rinaldi A, de Oliveira EP. Association between omega-3 fatty acids intake and muscle strength in older adults: a study from National Health and Nutrition Examination Survey (NHANES) 1999–2002. Clin Nutr. 2020;39(11):3434–41.

Article  CAS  PubMed  Google Scholar 

NHANES 1999–2006 DXA multiple imputation data files. Centers for Disease Control and Prevention. CDC twenty-four seven. Saving Lives, Protecting Peopleminus. https://wwwn.cdc.gov/Nchs/Nhanes/Dxa/Dxa.aspx.in.

Goodman MJ, Ghate SR, Mavros P, Sen S, Marcus RL, Joy E, Brixner DI. Development of a practical screening tool to predict low muscle mass using NHANES 1999–2004. J Cachexia Sarcopeni. 2013;4(3):187–97.

Article  Google Scholar 

Cai S, Fan J, Zhu L, Ye J, Rao X, Fan C, Zhong Y, Li Y. Bone mineral density and osteoporosis in relation to all-cause and cause-specific mortality in NHANES: a population-based cohort study. Bone. 2020;141:115597.

Article  CAS  PubMed  Google Scholar 

Kumar A, Mittal S, Orito S, Ishitani K, Ohta H. Impact of dietary intake, education, and physical activity on bone mineral density among North Indian women. J Bone Miner Metab. 2010;28(2):192–201.

Article  CAS  PubMed  Google Scholar 

Wang G, Fang ZB, Liu DL, Chu SF, Li HL, Zhao HX. Association between caffeine intake and lumbar spine bone mineral density in adults aged 20–49: a cross-sectional study. Front Endocrinol. 2022;13:1008275.

Article  Google Scholar 

Tanski W, Kosiorowska J, Szymanska-Chabowska A. Osteoporosis—risk factors, pharmaceutical and non-pharmaceutical treatment. Eur Rev Med Pharmaco. 2021;25(9):3557–66.

CAS  Google Scholar 

Kwon YM, Kim GW, Yim HW, Paek YJ, Lee KS. Association between dietary fat intake and bone mineral density in Korean adults: data from Korea National Health and Nutrition Examination Survey IV (2008 approximately 2009). Osteoporosis Int. 2015;26(3):969–76.

Article  Google Scholar 

Rikkonen T, Sirola J, Salovaara K, Tuppurainen M, Jurvelin JS, Honkanen R, Kroger H. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012;91(2):131–8.

Article  CAS  PubMed  Google Scholar 

Elhakeem A, Hartley A, Luo Y, Goertzen AL, Hannam K, Clark EM, Leslie WD, Tobias JH. Lean mass and lower limb muscle function in relation to hip strength, geometry and fracture risk indices in community-dwelling older women. Osteoporosis Int. 2019;30(1):211–20.

Article  CAS  Google Scholar 

Seabra A, Marques E, Brito J, Krustrup P, Abreu S, Oliveira J, Rego C, Mota J, Rebelo A. Muscle strength and soccer practice as major determinants of bone mineral density in adolescents. Jt Bone Spine. 2012;79(4):403–8.

Article  Google Scholar 

Kim KM, Lim S, Oh TJ, Moon JH, Choi SH, Lim JY, Kim KW, Park KS, Jang HC. Longitudinal changes in muscle mass and strength, and bone mass in older adults: gender-specific associations between muscle and bone losses. J Gerontol Biol. 2018;73(8):1062–9.

Article  CAS  Google Scholar 

Segal NA, Torner JC, Yang M, Curtis JR, Felson DT, Nevitt MC. Muscle mass is more strongly related to hip bone mineral density than is quadriceps strength or lower activity level in adults over age 50 year. J Clin Densitom. 2008;11(4):503–10.

Article  PubMed  PubMed Central  Google Scholar 

Eguchi Y, Toyoguchi T, Orita S, Shimazu K, Inage K, Fujimoto K, Suzuki M, Norimoto M, Umimura T, Shiga Y, et al. Reduced leg muscle mass and lower grip strength in women are associated with osteoporotic vertebral compression fractures. Arch Osteoporos. 2019;14(1):112.

Article  PubMed  Google Scholar 

Lerebours C, Buenzli PR. Towards a cell-based mechanostat theory of bone: the need to account for osteocyte desensitisation and osteocyte replacement. J Biomech. 2016;49(13):2600–6.

Article  PubMed  Google Scholar 

Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015;80:24–36.

Article  PubMed Central  Google Scholar 

Goodman CA. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev Physiol Bioch Pharmacol. 2014;166:43–95.

Article  CAS  Google Scholar 

Lu TW, Taylor SJ, O’Connor JJ, Walker PS. Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech. 1997;30(11–12):1101–6.

Article  CAS  Google Scholar 

Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12(10):1547–51.

Article  CAS  PubMed  Google Scholar 

Gomarasca M, Banfi G, Lombardi G. Myokines: the endocrine coupling of skeletal muscle and bone. Adv Clin Chem. 2020;94:155–218.

Article  CAS  Google Scholar 

Zacks SI, Sheff MF. Periosteal and metaplastic bone formation in mouse minced muscle regeneration. Lab Invest. 1982;46(4):405–12.

CAS  PubMed  Google Scholar 

Utvag SE, Grundnes O, Rindal DB, Reikeras O. Influence of extensive muscle injury on fracture healing in rat tibia. J Orthop Trauma. 2003;17(6):430–5.

Article  PubMed  Google Scholar 

Kaufman H, Reznick A, Stein H, Barak M, Maor G. The biological basis of the bone-muscle inter-relationship in the algorithm of fracture healing. Orthopedics. 2008;31(8):751.

CAS  PubMed  Google Scholar 

Travison TG, Beck TJ, Esche GR, Araujo AB, Mckinlay JB. Age trends in proximal femur geometry in men: variation by race and ethnicity. Osteoporosis Int. 2008;19(3):277–87.

Articl

留言 (0)

沒有登入
gif