Biomechanical control of lymphatic vessel physiology and functions

Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science. 2020;369. https://doi.org/10.1126/science.aax4063.

Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell. 2020;182:270–96. https://doi.org/10.1016/j.cell.2020.06.039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balint L, Jakus Z. Mechanosensation and mechanotransduction by lymphatic endothelial cells act as important regulators of lymphatic development and function. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22083955.

Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci. 2021;78:5903–23. https://doi.org/10.1007/s00018-021-03886-8.

Article  CAS  PubMed  Google Scholar 

Sabine A, Saygili Demir C, Petrova TV. Endothelial cell responses to biomechanical forces in lymphatic vessels. Antioxid Redox Signal. 2016;25:451–65. https://doi.org/10.1089/ars.2016.6685.

Article  CAS  PubMed  Google Scholar 

Gordon E, Schimmel L, Frye M. The importance of mechanical forces for in vitro endothelial cell biology. Front Physiol. 2020;11:684. https://doi.org/10.3389/fphys.2020.00684.

Article  PubMed  PubMed Central  Google Scholar 

Solari E, Marcozzi C, Negrini D, Moriondo A. Lymphatic vessels and their surroundings: how local physical factors affect lymph flow. Biology (Basel). 2020;9. https://doi.org/10.3390/biology9120463.

Rockson SG. Lymphedema. Am J Med. 2001;110:288–95.

Article  CAS  PubMed  Google Scholar 

Azhar SH, Lim HY, Tan BK, Angeli V. The unresolved pathophysiology of lymphedema. Front Physiol. 2020;11:137. https://doi.org/10.3389/fphys.2020.00137.

Article  PubMed  PubMed Central  Google Scholar 

Rockson SG. Advances in lymphedema. Circ Res. 2021;128:2003–16. https://doi.org/10.1161/CIRCRESAHA.121.318307.

Article  CAS  PubMed  Google Scholar 

Choe K, Jang JY, Park I, Kim Y, Ahn S, Park DY, et al. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J Clin Invest. 2015;125:4042–52. https://doi.org/10.1172/JCI76509.

Article  PubMed  PubMed Central  Google Scholar 

Jiang X, Tian W, Nicolls MR, Rockson SG. The lymphatic system in obesity, insulin resistance, and cardiovascular diseases. Front Physiol. 2019;10:1402. https://doi.org/10.3389/fphys.2019.01402.

Article  PubMed  PubMed Central  Google Scholar 

Cifarelli V, Eichmann A. The intestinal lymphatic system: functions and metabolic implications. Cell Mol Gastroenterol Hepatol. 2019;7:503–13. https://doi.org/10.1016/j.jcmgh.2018.12.002.

Article  PubMed  Google Scholar 

McDonald DM. Tighter lymphatic junctions prevent obesity. Science. 2018;361:551–2. https://doi.org/10.1126/science.aau5583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599–603. https://doi.org/10.1126/science.aap9331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escobedo N, Proulx ST, Karaman S, Dillard ME, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1- haploinsufficient mice. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.85096.

Blum KS, Karaman S, Proulx ST, Ochsenbein AM, Luciani P, Leroux JC, et al. Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS One. 2014;9:e94713 https://doi.org/10.1371/journal.pone.0094713.

Article  PubMed  PubMed Central  Google Scholar 

Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet. 2005;37:1072–81.

Article  CAS  PubMed  Google Scholar 

Escobedo N, Oliver G. The lymphatic vasculature: its role in adipose metabolism and obesity. Cell Metab. 2017;26:598–609. https://doi.org/10.1016/j.cmet.2017.07.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nanjee MN, Cooke CJ, Wong JS, Hamilton RL, Olszewski WL, Miller NE. Composition and ultrastructure of size subclasses of normal human peripheral lymph lipoproteins: quantification of cholesterol uptake by HDL in tissue fluids. J Lipid Res. 2001;42:639–48.

Article  CAS  PubMed  Google Scholar 

Randolph GJ, Miller NE. Lymphatic transport of high-density lipoproteins and chylomicrons. J Clin Invest. 2014;124:929–35. https://doi.org/10.1172/JCI71610.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reichl D, Simons LA, Myant NB, Pflug JJ, Mills GL. The lipids and lipoproteins of human peripheral lymph, with observations on the transport of cholesterol from plasma and tissues into lymph. Clin Sci Mol Med. 1973;45:313–29. https://doi.org/10.1042/cs0450313.

Article  CAS  PubMed  Google Scholar 

Reichl D, Miller NE. Pathophysiology of reverse cholesterol transport. Insights from inherited disorders of lipoprotein metabolism. Arteriosclerosis. 1989;9:785–97. https://doi.org/10.1161/01.atv.9.6.785.

Article  CAS  PubMed  Google Scholar 

Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123:1571–9. https://doi.org/10.1172/JCI63685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS, McGrath KC, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013;17:671–84. https://doi.org/10.1016/j.cmet.2013.04.002.

Article  CAS  PubMed  Google Scholar 

Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50:S189–194. https://doi.org/10.1194/jlr.R800088-JLR200.

Article  PubMed  PubMed Central  Google Scholar 

Wu JJ, Wagner AM. Verruciform xanthoma in association with milroy disease and leaky capillary syndrome. Pediatr Dermatol. 2003;20:44–7.

Article  PubMed  Google Scholar 

Woolling KR, Jenkins RE, Dolan PA, Evans PV. Localized xanthomas in lymphedema praecox. JAMA: J Am Med Assoc. 1970;211:1372–4.

Article  CAS  Google Scholar 

Goldrick RB, Ahrens EH Jr. Unilateral chylous lymphedema and xanthomatosis: a study of factors governing the flow of intestinal lymph. Am J Med. 1964;37:610–22.

Article  CAS  PubMed  Google Scholar 

Romaní J, Luelmo J, Sáez A, Yébenes M, Sábat M, Fernández-Chico N, et al. Localized xanthomas associated with primary lymphedema. Pediatr Dermatol. 2012;29:113–4. https://doi.org/10.1111/j.1525-1470.2011.01686.x.

Article  PubMed  Google Scholar 

Berger BW, Kantor I, Maier HS. Xanthomatosis and lymphedema. Arch Dermatol. 1972;105:730–1.

Article  CAS  PubMed  Google Scholar 

Yeo KP, Lim HY, Thiam CH, Azhar SH, Tan C, Tang Y, et al. Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe. Sci Adv. 2020;6. https://doi.org/10.1126/sciadv.abc2697.

Lemole GM. The role of lymphstasis in atherogenesis. Ann Thorac Surg. 1981;31:290–3. https://doi.org/10.1016/s0003-4975(10)60949-6.

Article  CAS  PubMed  Google Scholar 

Rademakers T, van der Vorst EP, Daissormont IT, Otten JJ, Theodorou K, Theelen TL, et al. Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis. Sci Rep. 2017;7:45263. https://doi.org/10.1038/srep45263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vuorio T, Nurmi H, Moulton K, Kurkipuro J, Robciuc MR, Ohman M, et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1162–70. https://doi.org/10.1161/ATVBAHA.114.302528.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milasan A, Jean G, Dallaire F, Tardif JC, Merhi Y, Sorci-Thomas M, et al. Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. J Am Heart Assoc. 2017;6. https://doi.org/10.1161/JAHA.117.006892.

Mackay CR. T-cell memory: the connection between function, phenotype and migration pathways. Immunol Today. 1991;12:189–92. https://doi.org/10.1016/0167-5699(91)90051-T.

Article  CAS  PubMed  Google Scholar 

Mackay CR, Marston WL, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990;171:801–17. https://doi.org/10.1084/jem.171.3.801.

Article  CAS  PubMed  Google Scholar 

Yawalkar N, Hunger RE, Pichler WJ, Braathen LR, Brand CU. Human afferent lymph from normal skin contains an increased number of mainly memory/effector CD4(+) T cells expressing activation, adhesion and co-stimulatory molecules. Eur J Immunol. 2000;30:491–7.

Article  CAS  PubMed  Google Scholar 

Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol. 2005;6:895–901. https://doi.org/10.1038/ni1240.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif