Development of a novel forensic age estimation strategy for aged blood samples by combining piRNA and miRNA markers

Deng XD, Lu T, Liu GF et al (2022) Forensic age prediction and age classification for critical age thresholds via 3.0T magnetic resonance imaging of the knee in the Chinese Han population. Int J Legal Med 136:841–852. https://doi.org/10.1007/s00414-022-02797-y

Article  PubMed  Google Scholar 

Correia Dias H, Manco L, Corte Real F, Cunha E (2021) A Blood-Bone-Tooth Model for Age Prediction in Forensic Contexts. Biology (Basel) 10:1312. https://doi.org/10.3390/biology10121312

Article  CAS  PubMed  Google Scholar 

Valsecchi A, Irurita Olivares J, Mesejo P (2019) Age estimation in forensic anthropology: methodological considerations about the validation studies of prediction models. Int J Legal Med 133:1915–1924. https://doi.org/10.1007/s00414-019-02064-7

Article  PubMed  Google Scholar 

Montesanto A, D’Aquila P, Lagani V et al (2020) A New Robust Epigenetic Model for Forensic Age Prediction. J Forensic Sci 65:1424–1431. https://doi.org/10.1111/1556-4029.14460

Article  CAS  PubMed  Google Scholar 

Correia Dias H, Cunha E, Corte Real F, Manco L (2020) Age prediction in living: Forensic epigenetic age estimation based on blood samples. Leg Med (Tokyo) 47:101763. S1344-6223(20)30097-3

Goto H, Iwata H, Takeo S et al (2013) Effect of bovine age on the proliferative activity, global DNA methylation, relative telomere length and telomerase activity of granulosa cells. Zygote 21:256–264. https://doi.org/10.1017/S0967199411000499

Article  CAS  PubMed  Google Scholar 

Theves C, Keyser-Tracqui C, Crubezy E, Salles JP, Ludes B, Telmon N (2006) Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA. J Forensic Sci 51:865–73. JFO163. https://doi.org/10.1111/j.1556-4029.2006.00163.x

Aliferi A, Ballard D (2022) Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors. Methods Mol Biol 2432:187–200. https://doi.org/10.1007/978-1-0716-1994-0_14

Article  PubMed  Google Scholar 

Pavanello S, Campisi M, Rigotti P et al (2022) DNA Methylation - and Telomere - Based Biological Age Estimation as Markers of Biological Aging in Donors Kidneys. Front Med (Lausanne) 9:832411. https://doi.org/10.3389/fmed.2022.832411

Article  PubMed  Google Scholar 

Schwender K, Hollander O, Klopfleisch S et al (2021) Development of two age estimation models for buccal swab samples based on 3 CpG sites analyzed with pyrosequencing and minisequencing. Forensic Sci Int Genet 53:102521. S1872-4973(21)00059-4

Szeto RA, Tran T, Truong J, Negraes PD, Trujillo CA (2021) RNA processing in neurological tissue: development, aging and disease. Semin Cell Dev Biol 114:57–67. S1084–9521(19)30254-X

Proshkina E, Solovev I, Koval L, Moskalev A (2020) The critical impacts of small RNA biogenesis proteins on aging, longevity and age-related diseases. Ageing Res Rev 62:101087. S1568-1637(20)30222-1

Song Y, Shen S, Sun Q (2022) Identification and validation of an epigenetically regulated long noncoding RNA model for breast cancer metabolism and prognosis. BMC Med Genomics 15:105. https://doi.org/10.1186/s12920-022-01256-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y, Saville L, Gollen B et al (2021) Increased Alu RNA processing in Alzheimer brains is linked to gene expression changes. EMBO Rep 22:e52255. https://doi.org/10.15252/embr.202052255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neema Agrawal, P. V. N. Dasaradhi, Asif Mohmmed et al (2003) RNA Interference: Biology,Mechanism, and Applications. Microbiol Mole Biol Rev 657-685. https://doi.org/10.1128/MMBR.67.4.657-685.2003

Glynn CL (2020) Potential applications of microRNA profiling to forensic investigations. RNA 26:1–9. https://doi.org/10.1261/rna.072173.119rna.072173.119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Wang C, Wei Y et al (2022) Circular RNA as a Potential Biomarker for Forensic Age Prediction. Front Genet 13:825443. https://doi.org/10.3389/fgene.2022.825443

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang C, Liu X, Zhao J et al (2020) Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study. Forensic Sci Int Genet 47:102300. S1872-4973(20)30073-9

Ameli Mojarad M, Shojaee B, Nazemalhosseini-Mojarad E (2022) piRNA: A promising biomarker in early detection of gastrointestinal cancer. Pathol Res Pract 230:153757. S0344–0338(21)00418–0

Rayford KJ, Cooley A, Rumph JT et al (2021) piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 22:2373. https://doi.org/10.3390/ijms22052373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erwin AA, Blumenstiel JP (2019) Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics 20:305. https://doi.org/10.1186/s12864-019-5668-3

Article  PubMed  PubMed Central  Google Scholar 

Lenart P, Novak J, Bienertova-Vasku J (2018) PIWI-piRNA pathway: Setting the pace of aging by reducing DNA damage. Mech Ageing Dev 173:29–38. S0047–6374(18)30018–6

Wang S, Wang Z, Tao R et al (2019) Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids. Forensic Sci Int Genet 42:171–80. S1872–4973(19)30221–2

Wang S, Wang Z, Tao R et al (2019) The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: A proof-of-principle study. Forensic Sci Int Genet 39:129–35. S1872–4973(18)30415–0

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. https://doi.org/10.1093/bioinformatics/btp612

Article  CAS  PubMed  Google Scholar 

Fang C, Zhao J, Liu X et al (2019) MicroRNA profile analysis for discrimination of monozygotic twins using massively parallel sequencing and real-time PCR. Forensic Sci Int Genet 38:23–31. S1872–4973(18)30094–2

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Kuzub N, Smialkovska V, Momot V, Moseiko V, Lushchak O, Koliada A (2021) Evaluation of Epigenetic Age Based on DNA Methylation Analysis of Several CpG Sites in Ukrainian Population. Front Genet 12:772298. https://doi.org/10.3389/fgene.2021.772298

Article  CAS  PubMed  Google Scholar 

Lee JE, Lee JM, Naue J et al (2022) A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet 57:102656. S1872–4973(21)00191–5

Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

Article  CAS  PubMed  Google Scholar 

Watanabe K, Akutsu T (2020) Evaluation of a co-extraction kit for mRNA, miRNA and DNA methylation-based body fluid identification. Leg Med (Tokyo) 42:101630. S1344–6223(19)30297–4

Mayes C, Houston R, Seashols-Williams S, LaRue B, Hughes-Stamm S (2019) The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg Med (Tokyo) 38:45–50. S1344–6223(19)30035–5

Rajan KS, Velmurugan G, Gopal P et al (2016) Abundant and Altered Expression of PIWI-Interacting RNAs during Cardiac Hypertrophy. Heart Lung Circ 25:1013–1020. https://doi.org/10.1016/j.hlc.2016.02.015

Article  PubMed  Google Scholar 

Liu Y, Dou M, Song X et al (2019) The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 18:123. https://doi.org/10.1186/s12943-019-1052-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Meng X, Pan C et al (2020) piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell Signal 67:109501. S0898–6568(19)30297–9

Tan L, Mai D, Zhang B et al (2019) PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer 18:9. https://doi.org/10.1186/s12943-019-0940-3

Article  PubMed  PubMed Central  Google Scholar 

Gorbunova V, Seluanov A, Mita P et al (2021) The role of retrotransposable elements in ageing and age-associated diseases. Nature 596:43–53. https://doi.org/10.1038/s41586-021-03542-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anastasia A, David B, Matteo D et al (2018) DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models. Forensic Sci Int Genet 37:215–226. https://doi.org/10.1016/j.fsigen.2018.09.003

Article  CAS  Google Scholar 

Glinge C, Clauss S, Boddum K et al (2017) Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations. PLoS One 12:e0167969. https://doi.org/10.1371/journal.pone.0167969

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif