Surface-enhanced Raman imaging through sprayed probes for the application in chemical visualization of methamphetamine within fingerprints

Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–6.

Article  CAS  Google Scholar 

Lux C, Lubio A, Ruediger A, Robert S, Muehlethaler C. Optimizing the analysis of dyes by surface-enhanced Raman spectroscopy (SERS) using a conventional-microwave silver nanoparticles synthesis. Forensic Chem. 2019;16: 100186.

Article  CAS  Google Scholar 

Le Ru EC, Blackie E, Meyer M, Etchegoin PG. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C. 2007;111(37):13794–803.

Article  Google Scholar 

Wang D, Gong Z, Tang M, Fan W, Huang B, Fan M. Halogen ion modified Ag NPs for ultrasensitive SERS detection of nitroaromatic explosives. Anal Methods. 2022;14(38):3798–801.

Article  CAS  PubMed  Google Scholar 

Kumar G, Soni RK. Trace-level detection of explosive molecules with triangular silver nanoplates-based SERS substrates. Plasmonics. 2021;17(2):559–73.

Article  Google Scholar 

Sahin F, Celik N, Camdal A, Sakir M, Ceylan A, Ruzi M, Onses MS. Machine learning-assisted pesticide detection on a flexible surface-enhanced Raman scattering substrate prepared by silver nanoparticles. ACS Appl Nano Mater. 2022;5(9):13112–22.

Article  CAS  Google Scholar 

Tao M, Fang H, Feng X, He Y, Liu X, Shi Y, Wei Y, Hong Z, Fan Y. Rapid trace detection of pesticide residues on tomato by surface-enhanced Raman spectroscopy and flexible tapes. J Food Qual. 2022;2022:1–10.

Article  Google Scholar 

Khandasammy SR, Fikiet MA, Mistek E, Ahmed Y, Halámková L, Bueno J, Lednev IK. Bloodstains, paintings, and drugs: Raman spectroscopy applications in forensic science. Forensic Chem. 2018;8:111–33.

Article  CAS  Google Scholar 

Juarez I, Urouski D. Effects of crime scene contaminants on surface-enhanced Raman analysis of hair. J Forensic Sci. 2022;68:113–118.

Rana V, Canamares MV, Kubic T, Leona M, Lombardi JR. Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J Forensic Sci. 2011;56(1):200–7.

Article  CAS  PubMed  Google Scholar 

Peralta D, Galar M, Triguero I, Paternain D, García S, Barrenechea E, Benítez JM, Bustince H, Herrera F. A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation. Inf Sci. 2015;315:67–87.

Article  Google Scholar 

Kanodarwala FK, Lesniewski A, Olszowska-Los I, Spindler X, Pieta IS, Lennard C, Niedziolka-Jonsson J, Moret S, Roux C. Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming. Forensic Sci Int. 2021;326: 110915.

Article  CAS  PubMed  Google Scholar 

Howorka H, Kretschmer K. Experimental study of using cyanoacrylate ester vapour for developing latent fingerprints. Forensic Sci Int. 1990;46(1):31–2.

Article  CAS  Google Scholar 

Chávez D, Garcia CR, Oliva J, Diaz-Torres LA. A review of phosphorescent and fluorescent phosphors for fingerprint detection. Ceram Int. 2021;47(1):10–41.

Article  Google Scholar 

Fowble K L, Musah R A. Simultaneous imaging of latent fingermarks and detection of analytes of forensic relevance by laser ablation direct analysis in real time imaging-mass spectrometry (LADI-MS). Forensic Chem. 2019;15:100173.

Goucher E, Kicman A, Smith N, Jickells S. The detection and quantification of lorazepam and its 3-O-glucuronide in fingerprint deposits by LC-MS/MS. J Sep Sci. 2009;32(13):2266–72.

Article  CAS  PubMed  Google Scholar 

Tahtouh M, Despland P, Shimmon R, Kalman JR, Reedy BJ. The application of infrared chemical imaging to the detection and enhancement of latent fingerprints: method optimization and further findings. J Forensic Sci. 2007;52(5):1089–96.

Article  CAS  PubMed  Google Scholar 

Connatser R M, Prokes S M, Glembocki O J, Schuler R L, Gardner C W, Lewis S A, Sr., Lewis L A. Toward surface-enhanced Raman imaging of latent fingerprints. J Forensic Sci. 2010; 55(6):1462-70.

O’Malley KY, Hart CL, Casey S, Downey LA. Methamphetamine, amphetamine, and aggression in humans: a systematic review of drug administration studies. Neurosci Biobehav Rev. 2022;141: 104805.

Article  CAS  PubMed  Google Scholar 

Mercolini L, Protti M. Biosampling strategies for emerging drugs of abuse: towards the future of toxicological and forensic analysis. J Pharm Biomed Anal. 2016;130:202–19.

Article  CAS  PubMed  Google Scholar 

Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: an overview of animal and human investigations. Neurosci Biobehav Rev. 2021;131:541–59.

Article  CAS  PubMed  Google Scholar 

Matey J M, Moreno de Simon M D, García-Ruiz C, Montalvo G. A validated GC–MS method for ketamine and norketamine in hair and its use in authentic cases. Forensic Sci Int. 2019; 301: 447–454.

Concheiro M, Simoes SM, Quintela O, de Castro A, Dias MJ, Cruz A, Lopez-Rivadulla M. Fast LC-MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Sci Int. 2007;171(1):44–51.

Article  CAS  PubMed  Google Scholar 

Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochim Acta A Mol Biomol Spectrosc. 2020;229: 118021.

Article  CAS  PubMed  Google Scholar 

Azimi S, Ocoslis A. Recent advances in the use of surface-enhanced raman scattering for illicit drug detection. Sensors (Basel). 2022;22 (10):3877.

Payne G, Reedy B, Lennard C, Comber B, Exline D, Roux C. A further study to investigate the detection and enhancement of latent fingerprints using visible absorption and luminescence chemical imaging. Forensic Sci Int. 2005;150(1):33–51.

Article  CAS  PubMed  Google Scholar 

Li S, Wang L, Ma Y, Zhu L, Lin W. A multifunctional fluorescent molecule with AIE characteristics for SO2 derivatives detection, fluorescence ink and latent fingerprint imaging. Sens Actuators B Chem. 2022;371: 132595.

Article  CAS  Google Scholar 

Souza MA, de Oliveira KV, Oliveira FCC, Silva LP, Rubim JC. The adsorption of methamphetamine on Ag nanoparticles dispersed in agarose gel – detection of methamphetamine in fingerprints by SERS. Vib Spectrosc. 2018;98:152–7.

Article  CAS  Google Scholar 

Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20(15):6414–20.

Article  CAS  PubMed  Google Scholar 

Hong Y, Li M, Wang Z, Xu B, Zhang Y, Wang S, He W, Wang C, Zhou G, Chen Y, Su Y, Li J, Gong T. Engineered optoplasmonic core-satellite microspheres for SERS determination of methamphetamine derivative and its precursors. Sens Actuators B Chem. 2022;358:131437.

Solís DM, Taboada J M, Obelleiro F, Liz-Marzán L M, García de Abajo FJ. Optimization of nanoparticle-based SERS substrates through large-scale realistic simulations. ACS Photonics. 2017;4(2):329–337.

Lee KC, Chen YH, Lin HY, Cheng CC, Chen PY, Wu TY, Shih MH, Wei KH, Li LJ, Chang CW. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci Rep. 2015;5:16374.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong Y, Zhou X, Xu B, Huang Y, He W, Wang S, Wang C, Zhou G, Chen Y, Gong T. Optoplasmonic hybrid materials for trace detection of methamphetamine in biological fluids through SERS. ACS Appl Mater Interfaces. 2020;12(21):24192–200.

Article  CAS  PubMed  Google Scholar 

Frick A A, Spindler X, Bleay S M, Chemistry of fingerprint residue. In Encyclopedia of forensic sciences, third edition (Third Edition), Houck, M. M., Ed. Elsevier: Oxford, 2023; pp 521-529.

留言 (0)

沒有登入
gif