A rapid single-phase extraction for polar staphylococcal lipids

Canepari P, Boaretti M. Lipoteichoic acid as a target for antimicrobial action. Microb Drug Resist-Mech Epidemiol Dis. 1996;2(1):85-9.

Malabarba A, Goldstein BP. Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother. 2005;55(suppl_2):ii15-ii20.

Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.

Article  CAS  PubMed  Google Scholar 

Yao JW, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem. 2015;290(10):5940–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gloux K, Guillemet M, Soler C, Morvan C, Halpern D, Pourcel C, et al. Clinical relevance of type II fatty acid synthesis bypass in Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(5):e02515–16.

Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA. Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43(10):5285–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother. 2008;52(1):269–78.

Article  CAS  PubMed  Google Scholar 

Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, et al. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(6):2312–8.

Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, et al. Characterization of the mechanisms of daptomycin resistance among Gram-positive bacterial pathogens by multidimensional lipidomics. mSphere. 2017;2(6):e00492–17.

Hines KM, Xu L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chem Phys Lipids. 2019;219:15–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hines KM, Shen T, Ashford NK, Waalkes A, Penewit K, Holmes EA, et al. Occurrence of cross-resistance and beta-lactam seesaw effect in glycopeptide-, lipopeptide- and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J Antimicrob Chemother. 2020;75(5):1182–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werth BJ, Sakoulas G, Rose WE, Pogliano J, Tewhey R, Rybak MJ. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57(1):66–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werth BJ, Steed ME, Kaatz GW, Rybak MJ. Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the “seesaw effect”. Antimicrob Agents Chemother. 2013;57(6):2664–8.

Werth BJ. Exploring the pharmacodynamic interactions between tedizolid and other orally bioavailable antimicrobials against Staphylococcus aureus and Staphylococcus epidermidis. J Antimicrob Chemother. 2017;72(5):1410–14.

Zhang R, Barreras Beltran IA, Ashford NK, Penewit K, Waalkes A, Holmes EA, et al. Synergy between beta-lactams and lipo-, glyco-, and lipoglycopeptides, is independent of the seesaw effect in methicillin-resistant Staphylococcus aureus. Front Mol Biosci. 2021;8: 688357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.

Article  CAS  PubMed  Google Scholar 

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

Article  CAS  PubMed  Google Scholar 

Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz M, Wang M, Frisch-Daiello J, Han X. Improved butanol-methanol (BUME) method by replacing acetic acid for lipid extraction of biological samples. Lipids. 2016;51(7):887–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–700.

Article  PubMed  PubMed Central  Google Scholar 

Lofgren L, Forsberg GB, Stahlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6:27688.

Article  PubMed  PubMed Central  Google Scholar 

Mirnaghi FS, Chen Y, Sidisky LM, Pawliszyn J. Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC-MS/MS for analysis of complex samples. Anal Chem. 2011;83(15):6018–25.

Article  CAS  PubMed  Google Scholar 

Birjandi AP, Bojko B, Ning Z, Figeys D, Pawliszyn J. High throughput solid phase microextraction: a new alternative for analysis of cellular lipidome? J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1043:12–9.

Article  CAS  PubMed  Google Scholar 

Garwolinska D, Hewelt-Belka W, Namiesnik J, Kot-Wasik A. Rapid characterization of the human breast milk lipidome using a solid-phase microextraction and liquid chromatography mass spectrometry-based approach. J Proteome Res. 2017;16(9):3200–8.

Article  CAS  PubMed  Google Scholar 

Reyes-Garces N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trac-Trends Anal Chem. 2019;113:172–81.

Article  CAS  Google Scholar 

Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in frozen human plasma. J Lipid Res. 2017;58(12):2275–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Z, Xu Y. An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res. 2010;51(3):652–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Southam AD, Haglington LD, Najdekr L, Jankevics A, Weber RJM, Dunn WB. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst. 2020;145(20):6511–23.

Article  CAS  PubMed  Google Scholar 

Horing M, Stieglmeier C, Schnabel K, Hallmark T, Ekroos K, Burkhardt R, et al. Benchmarking one-phase lipid extractions for plasma lipidomics. Anal Chem. 2022;94(36):12292–6.

Article  PubMed  PubMed Central  Google Scholar 

Alvarez HM, Steinbuchel A. Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol. 2002;60(4):367–76.

Article  CAS  PubMed  Google Scholar 

Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6(3):222–33.

Article  PubMed  Google Scholar 

Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ. An efficient single phase method for the extraction of plasma lipids. Metabolites. 2015;5(2):389–403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreira R, Taylor SD. The impact of lysyl-phosphatidylglycerol on the interaction of daptomycin with model membranes. Org Biomol Chem. 2022;20:9319–29.

Medina J, Borreggine R, Teav T, Gao L, Ji S, Carrard J, et al. Omic-scale high-throughput quantitative LC-MS/MS approach for circulatory lipid phenotyping in clinical research. Anal Chem. 2023;95(6):3168–79.

Article  CAS  PubMed  Google Scholar 

Institute. CaLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard-eleventh edition. Wayne, PA; 2018.

Wilson DA, Young S, Timm K, Novak-Weekley S, Marlowe EM, Madisen N, et al. Multicenter evaluation of the Bruker MALDI biotyper CA system for the identification of clinically important bacteria and yeasts. Am J Clin Pathol. 2017;147(6):623–31.

Article  CAS  PubMed  Google Scholar 

Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Antimicrobial Therapeutics Reviews: the Bacterial Cell Wall as an Antimicrobial Target. 2013;1277:139-58.

留言 (0)

沒有登入
gif