Targeting Glutamine Metabolism as an Attractive Therapeutic Strategy for Acute Myeloid Leukemia

Acute myeloid leukaemia. Nat Rev Dis Primers. 2016;2:16011. https://doi.org/10.1038/nrdp.2016.11.

Article  Google Scholar 

Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ. 2021;375:n2026. https://doi.org/10.1136/bmj.n2026.

Article  PubMed  Google Scholar 

Bose P, Vachhani P, Cortes JE. Treatment of relapsed/refractory acute myeloid leukemia. Curr Treat Options Oncol. 2017;18(3):17. https://doi.org/10.1007/s11864-017-0456-2.

Article  PubMed  Google Scholar 

LeBlanc TW, Erba HP. Shifting paradigms in the treatment of older adults with AML. Semin Hematol. 2019;56(2):110–7. https://doi.org/10.1053/j.seminhematol.2019.02.002.

Article  PubMed  Google Scholar 

Gronningsaeter IS, Reikvam H, Aasebo E, Bartaula-Brevik S, Tvedt TH, Bruserud O, et al. Targeting cellular metabolism in acute myeloid leukemia and the role of patient heterogeneity. Cells. 2020;9(5). https://doi.org/10.3390/cells9051155.

Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34. https://doi.org/10.1038/nrc.2016.71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayers JR, Vander Heiden MG. Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem Sci. 2015;40(3):130–40. https://doi.org/10.1016/j.tibs.2015.01.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng. 2017;19:163–94. https://doi.org/10.1146/annurev-bioeng-071516-044546.

Article  CAS  PubMed  Google Scholar 

Darmaun D, Matthews DE, Bier DM. Glutamine and glutamate kinetics in humans. Am J Physiol. 1986;251(1 Pt 1):E117–26. https://doi.org/10.1152/ajpendo.1986.251.1.E117.

Article  CAS  PubMed  Google Scholar 

Rex MR, Williams R, Birsoy K, Ta Llman MS, Stahl M. Targeting mitochondrial metabolism in acute myeloid leukemia. Leuk Lymphoma. 2022;63(3):530–7. https://doi.org/10.1080/10428194.2021.1992759.

Article  CAS  PubMed  Google Scholar 

Gregory MA, Nemkov T, Park HJ, Zaberezhnyy V, Gehrke S, Adane B, et al. Targeting glutamine metabolism and redox state for leukemia therapy. Clin Cancer Res. 2019;25(13):4079–90. https://doi.org/10.1158/1078-0432.CCR-18-3223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kreitz J, Schonfeld C, Seibert M, Stolp V, Alshamleh I, Oellerich T, et al. Metabolic plasticity of acute myeloid leukemia. Cells. 2019;8(8). https://doi.org/10.3390/cells8080805

Meng D, Yang Q, Wang H, Melick CH, Navlani R, Frank AR, et al. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem. 2020;295(10):2890–9. https://doi.org/10.1074/jbc.AC119.011578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones CL, Stevens BM, D’Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018;34(5):724-40 e4. https://doi.org/10.1016/j.ccell.2018.10.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Tan G, Wang H, Chen P, Hao J, Wang Y. Identification of novel serum biomarker for the detection of acute myeloid leukemia based on liquid chromatography-mass spectrometry. J Pharm Biomed Anal. 2019;166:357–63. https://doi.org/10.1016/j.jpba.2019.01.022.

Article  CAS  PubMed  Google Scholar 

Saito Y, Sawa D, Kinoshita M, Yamada A, Kamimura S, Suekane A, et al. EVI1 triggers metabolic reprogramming associated with leukemogenesis and increases sensitivity to L-asparaginase. Haematologica. 2020;105(8):2118–29. https://doi.org/10.3324/haematol.2019.225953.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dernie F. Characterisation of a mitochondrial glutamine transporter provides a new opportunity for targeting glutamine metabolism in acute myeloid leukaemia. Blood Cells Mol Dis. 2021;88:102422. https://doi.org/10.1016/j.bcmd.2020.102422.

Article  CAS  PubMed  Google Scholar 

Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol. 2014;42(4):247–51. https://doi.org/10.1016/j.exphem.2013.12.001.

Article  CAS  PubMed  Google Scholar 

Gregory MA, Nemkov T, Reisz JA, Zaberezhnyy V, Hansen KC, D’Alessandro A, et al. Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia. Exp Hematol. 2018;58:52–8. https://doi.org/10.1016/j.exphem.2017.09.007.

Article  CAS  PubMed  Google Scholar 

Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 2015;126(11):1346–56. https://doi.org/10.1182/blood-2015-01-621870.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang WH, Qiu Y, Stamatatos O, Janowitz T, Lukey MJ. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 2021;7(8):790–804. https://doi.org/10.1016/j.trecan.2021.04.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amaya ML, Inguva A, Pei S, Jones C, Krug A, Ye H, et al. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood. 2022;139(4):584–96. https://doi.org/10.1182/blood.2021013201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, et al. The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022;40(12):1566-82 e10. https://doi.org/10.1016/j.ccell.2022.10.004.

Article  CAS  PubMed  Google Scholar 

Zhao H, Jiang Y, Lin F, Zhong M, Tan J, Zhou Y, et al. Chidamide and apatinib are therapeutically synergistic in acute myeloid leukemia stem and progenitor cells. Exp Hematol Oncol. 2022;11(1):29. https://doi.org/10.1186/s40164-022-00282-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emadi A, Law JY, Strovel ET, Lapidus RG, Jeng LJB, Lee M, et al. Asparaginase Erwinia chrysanthemi effectively depletes plasma glutamine in adult patients with relapsed/refractory acute myeloid leukemia. Cancer Chemother Pharmacol. 2018;81(1):217–22. https://doi.org/10.1007/s00280-017-3459-6.

Article  CAS  PubMed  Google Scholar 

Emadi A, Kapadia B, Bollino D, Bhandary B, Baer MR, Niyongere S, et al. Venetoclax and pegcrisantaspase for complex karyotype acute myeloid leukemia. Leukemia. 2021;35(7):1907–24. https://doi.org/10.1038/s41375-020-01080-6.

Article  CAS  PubMed  Google Scholar 

Michelozzi IM, Granata V, De Ponti G, Alberti G, Tomasoni C, Antolini L, et al. Acute myeloid leukaemia niche regulates response to L-asparaginase. Br J Haematol. 2019;186(3):420–30. https://doi.org/10.1111/bjh.15920.

Article  CAS  PubMed  Google Scholar 

Polet F, Martherus R, Corbet C, Pinto A, Feron O. Inhibition of glucose metabolism prevents glycosylation of the glutamine transporter ASCT2 and promotes compensatory LAT1 upregulation in leukemia cells. Oncotarget. 2016;7(29):46371–83. https://doi.org/10.18632/oncotarget.10131.

Article  PubMed  PubMed Central  Google Scholar 

Rosilio C, Nebout M, Imbert V, Griessinger E, Neffati Z, Benadiba J, et al. L-type amino-acid transporter 1 (LAT1): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia. Leukemia. 2015;29(6):1253–66. https://doi.org/10.1038/leu.2014.338.

Article  CAS  PubMed  Google Scholar 

Li Y, Shao H, Da Z, Pan J, Fu B. High expression of SLC38A1 predicts poor prognosis in patients with de novo acute myeloid leukemia. J Cell Physiol. 2019;234(11):20322–8. https://doi.org/10.1002/jcp.28632.

Article  CAS  PubMed  Google Scholar 

Broer A, Rahimi F, Broer S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem. 2016;291(25):13194–205. https://doi.org/10.1074/jbc.M115.700534.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K, Cao F, Fang W, Hu Y, Chen Y, Ding H, et al. Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression. BMC Cancer. 2013;13:343. https://doi.org/10.1186/1471-2407-13-343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zavorka Thomas ME, Lu X, Talebi Z, Jeon JY, Buelow DR, Gibson AA, et al. Gilteritinib inhibits glutamine uptake and utilization in FLT3-ITD-positive AML. Mol Cancer Ther. 2021;20(11):2207–17. https://doi.org/10.1158/1535-7163.MCT-21-0071.

Article  PubMed  PubMed Central  Google Scholar 

Hanaford AR, Alt J, Rais R, Wang SZ, Kaur H, Thorek DLJ, et al. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Transl Oncol. 2019;12(10):1314–22. https://doi.org/10.1016/j.tranon.2019.05.013.

Article  PubMed  PubMed Central  Google Scholar 

Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18(3):207–19. https://doi.org/10.1016/j.ccr.2010.08.009.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif