Cyclopentadienyl ring activation in organometallic chemistry and catalysis

Chirik, P. J. Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics 29, 1500–1517 (2010).

Article  CAS  Google Scholar 

Field, L. D., Lindall, C. M., Masters, A. F. & Clentsmith, G. K. B. Penta-arylcyclopentadienyl complexes. Coord. Chem. Rev. 255, 1733–1790 (2011).

Article  CAS  Google Scholar 

Mas-Rosello, J., Herraiz, A. G., Audic, B., Laverny, A. & Cramer, N. Chiral cyclopentadienyl ligands: design, syntheses, and applications in asymmetric catalysis. Angew. Chem. Int. Ed. 60, 13198–13224 (2021).

Article  CAS  Google Scholar 

Shapiro, P. J. The evolution of the ansa-bridge and its effect on the scope of metallocene chemistry. Coord. Chem. Rev. 231, 67–81 (2002).

Article  CAS  Google Scholar 

Enders, M. & Baker, W. R. Synthesis of aryl- and heteroaryl-substituted cyclopentadienes and indenes and their use in transition metal chemistry. Curr. Org. Chem. 10, 937–953 (2006).

Article  CAS  Google Scholar 

Morris, R. H. Brønsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 116, 8588–8654 (2016).

Article  CAS  PubMed  Google Scholar 

Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

Article  CAS  PubMed  Google Scholar 

Wiedner, E. S., Appel, A. M., Raugei, S., Shaw, W. J. & Bullock, R. M. Molecular catalysts with diphosphine ligands containing pendant amines. Chem. Rev. 122, 12427–12474 (2022).

Article  CAS  PubMed  Google Scholar 

Kuo, J. L., Lorenc, C., Abuyuan, J. M. & Norton, J. R. Catalysis of radical cyclizations from alkyl iodides under H2: evidence for electron transfer from [CpV(CO)3H]−. J. Am. Chem. Soc. 140, 4512–4516 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo, J. L. et al. Thermodynamics of H+/H•/H−/e− transfer from [CpV(CO)3H]−: comparisons to the isoelectronic CpCr(CO)3H. Organometallics 38, 4319–4328 (2019).

Article  CAS  Google Scholar 

Yao, C., Dahmen, T., Gansäuer, A. & Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 364, 764–767 (2019).

Article  CAS  PubMed  Google Scholar 

DuBois, D. L. & Berning, D. E. Hydricity of transition-metal hydrides and its role in CO2 reduction. Appl. Organomet. Chem. 14, 860–862 (2000).

Article  CAS  Google Scholar 

Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).

Article  CAS  Google Scholar 

Barlow, J. M. & Yang, J. Y. Thermodynamic considerations for optimizing selective CO2 reduction by molecular catalysts. ACS Cent. Sci. 5, 580–588 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macomber, D. W., Hart, W. P. & Rausch, M. D. Advances in Organometallic Chemistry Vol. 21 (eds Stone, F. G. A. & West, R.) 1–55 (Academic, 1982).

Green, M. L. H., Pratt, L. & Wilkinson, G. 760. A new type of transition metal–cyclopentadiene compound. J. Chem. Soc. 1959, 3753–3767 (1959). The first characterization of Cp ring activation products with nucleophilic and radical reagents.

Article  Google Scholar 

Fischer, E. O. & Herberich, G. E. Über aromatenkomplexe von metallen, XLIV. Über die reaktivität des di‐cyclopentadienyl‐kobalt(III)‐kations. Chem. Ber. 94, 1517–1523 (1961).

Article  CAS  Google Scholar 

Churchill, M. R., Mason, R. & Nyholm, R. S. The crystal and molecular structure of π-cyclopentadienyl 1-phenylcyclopentadiene cobalt. Proc. Math. Phys. Eng. 279, 191–209 (1964). The first unambiguous structural determination of Cp ring activation using X-ray crystallography.

CAS  Google Scholar 

Lehmkuhl, H. & Nehl, H. F. Über (cyclopentadienyl)organylcobalt‐komplexe. Chem. Ber. 117, 3443–3456 (2006).

Article  Google Scholar 

Davison, A., Green, M. L. H. & Wilkinson, G. 620. π-Cyclopentadienyl- and cyclopentadiene-iron carbonyl complexes. J. Chem. Soc. Dalton Trans. 1961, 3172–3177 (1961).

Google Scholar 

Angelici, R. J. & Fischer, E. O. New cyclopentadienyl complexes of rhodium. J. Am. Chem. Soc. 85, 3733–3735 (1963).

Article  CAS  Google Scholar 

Davies, S. G., Green, M. L. H. & Mingos, D. M. P. Nucleophilic addition to organotransition metal cations containing unsaturated hydrocarbon ligands: a survey and interpretation. Tetrahedron 34, 3047–3077 (1978).

Article  CAS  Google Scholar 

Yan, Y., Zhang, J., Qiao, Y. & Tang, C. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization. Macromol. Rapid Commun. 35, 254–259 (2014).

Article  CAS  PubMed  Google Scholar 

Yan, Y., Zhang, J., Wilbon, P., Qiao, Y. & Tang, C. Ring-opening metathesis polymerization of 18-e− cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization. Macromol. Rapid Commun. 35, 1840–1845 (2014).

CAS  PubMed  Google Scholar 

Enders, M., Kohl, G. & Pritzkow, H. Synthesis of main group and transition metal complexes with the (8-quinolyl)cyclopentadienyl ligand and their application in the polymerization of ethylene. Organometallics 23, 3832–3839 (2004).

Article  CAS  Google Scholar 

Yan, Y. et al. Syntheses of monosubstituted rhodocenium derivatives, monomers, and polymers. Macromolecules 48, 1644–1650 (2015).

Article  CAS  Google Scholar 

Vanicek, S. et al. Chemoselective, practical synthesis of cobaltocenium carboxylic acid hexafluorophosphate. Organometallics 33, 1152–1156 (2014).

Article  CAS  Google Scholar 

Pita-Milleiro, A. et al. Unveiling the latent reactivity of Cp* ligands (C5Me5−) toward carbon nucleophiles on an iridium complex. Inorg. Chem. 62, 5961–5971 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broadhead, G. D., Osgerby, J. M. & Pauson, P. L. Ferrocene derivatives. Part V: Ferrocenealdehyde. J. Chem. Soc. 1958, 650–656 (1958).

Article  Google Scholar 

Rosenblum, M., Santer, J. O. & Howells, W. G. The chemistry and structure of ferrocene. VIII: Interannular resonance and the mechanism of electrophilic substitution. J. Am. Chem. Soc. 85, 1450–1458 (1963).

Article  CAS  Google Scholar 

Pauson, P. L. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2001).

Malischewski, M. et al. Protonation of ferrocene: a low-temperature X-ray diffraction study of [Cp2FeH](PF6) reveals an iron-bound hydrido ligand. Angew. Chem. Int. Ed. 56, 13372–13376 (2017).

Article  CAS  Google Scholar 

Court, T. L. & Werner, H. Studies on the reactivity of metal π-complexes. J. Organomet. Chem. 65, 245–251 (1974).

Article  CAS  Google Scholar 

El Murr, N. & Laviron, E. Electrochimie de composés organométalliques. I. Electrosynthèse de cyclopentadiène cyclopentadiényl cobalt substitués. Can. J. Chem. 54, 3350–3356 (1976).

Article  CAS  Google Scholar 

El Murr, N. & Laviron, E. Syntheses using electrochemically generated cobaltocene or cobaltocene anion. Tetrahedr. Lett. 16, 875–878 (1975).

Article  Google Scholar 

Koelle, U. & Khouzami, F. Permethylated electron-excess metallocenes. Angew. Chem. Int. Ed. Engl. 19, 640–641 (1980).

Article  Google Scholar 

Werner, H. & Dernberger, T. Untersuchungen zur reaktivität von metall-π-komplexen. J. Organomet. Chem. 198, 97–103 (1980).

Article  CAS  Google Scholar 

Wilkinson, G., Cotton, F. A. & Birmingham, J. M. On manganese cyclopentadienide and some chemical reactions of neutral bis-cyclopentadienyl metal compounds. J. Inorg. Nucl. Chem. 2, 95–113 (1956).

Article  CAS  Google Scholar 

Katz, S., Weiher, J. F. & Voigt, A. F. Reaction of biscyclopentadienylcobalt(II) with organic halides. J. Am. Chem. Soc. 80, 6459 (1958).

Article  CAS  Google Scholar 

Herberich, G. E., Bauer, E. & Schwarzer, J. Untersuchungen zur reaktivität organometallischer komplexe III. Über die reaktion von dicyclopentadienylkobalt mit halogenmethanen. J. Organomet. Chem. 17, 445–452 (1969).

Article  CAS  Google Scholar 

Herberich, G. E. & Schwarzer, J. Free radical additions to dicyclopentadienylcobalt. Angew. Chem. Int. Ed. Engl. 9, 897–897 (1970). Strong mechanistic evidence for radical-based Cp ring activation.

Article  CAS  Google Scholar 

Herberich, G. E. & Schwarzer, J. Untersuchungen zur reaktivität organometallischer komplexe. J. Organomet. Chem. 34, C43–C47 (1972).

Article  CAS  Google Scholar 

Herberich, G. E., Carstensen, T., Klein, W. & Schmidt, M. U. Reaction of 19-valence-electron sandwich complexes with alkyl-halides — a radical-clock investigation. Organometallics 12, 1439–1441 (1993).

Article  CAS  Google Scholar 

Gusev, O. V. et al. Synth

留言 (0)

沒有登入
gif