Fragmentation and [4 + 3] cycloaddition in sodorifen biosynthesis

Ryu, C.-M. et al. Bacterial volatiles promote growth in arabidopsis. Proc. Natl Acad. Sci. USA 100, 4927–4932 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H. H., Molla, M. N., Cantor, C. R. & Collins, J. J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–86 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chernin, L. et al. Quorum-sensing quenching by rhizobacterial volatiles. Environ. Microbiol. Rep. 3, 698–704 (2011).

Article  CAS  PubMed  Google Scholar 

Vespermann, A., Kai, M. & Piechulla, B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73, 5639–5641 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

von Reuss, S. H., Kai, M., Piechulla, B. & Francke, W. Octamethylbicyclo[3.2.1]octadienes from the rhizobacterium Serratia odorifera. Angew. Chem. Int. Ed. 49, 2009–2010 (2010).

Article  Google Scholar 

Domik, D., Magnus, N. & Piechulla, B. Analysis of a new cluster of genes involved in the synthesis of the unique volatile organic compound sodorifen of Serratia plymuthica 4Rx13. FEMS Microbiol. Lett. 363, fnw139 (2016).

Article  PubMed  Google Scholar 

Domik, D. et al. A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13. Front. Microbiol. 7, 737 (2016).

Article  PubMed  PubMed Central  Google Scholar 

von Reuss, S. et al. Sodorifen biosynthesis in the rhizobacterium Serratia plymuthica involves methylation and cyclization of MEP-derived farnesyl pyrophosphate by a SAM-dependent C-methyltransferase. J. Am. Chem. Soc. 140, 11855–11862 (2018).

Article  Google Scholar 

Duell, E. R. et al. Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E. coli. Microb. Cell. Fact. 18, 32 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rabe, P. et al. Conformational analysis, thermal rearrangement and EI-MS-fragmentation mechanism of (1(10)E,4E,6S,7R)-germacradien-6-ol by 13C-labeling experiments. Angew. Chem. Int. Ed. 54, 13448–13451 (2015).

Article  CAS  Google Scholar 

Eustaquio, A. S., Pojer, F., Noel, J. P. & Moore, B. S. Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat. Chem. Biol. 4, 69–74 (2008).

Article  CAS  PubMed  Google Scholar 

Rabe, P. et al. Terpene cyclases from social amoebae. Angew. Chem. Int. Ed. 55, 15420–15423 (2016).

Article  CAS  Google Scholar 

Rabe, P. et al. Mechanistic investigantions on two bacterial diterpene cyclases: spiroviolene synthase and tsukubadiene synthase. Angew. Chem. Int. Ed. 56, 2776–2779 (2017).

Article  CAS  Google Scholar 

Rinkel, J. & Dickschat, J. S. Addressing the chemistry of germacrene A by isotope labeling experiments. Org. Lett. 21, 2426–2429 (2019).

Article  CAS  PubMed  Google Scholar 

Rinkel, J., Lauterbach, L., Rabe, P. & Dickschat, J. S. Two diterpene synthases for spiroalbatene and cembrene A from Allokutzneria albata. Angew. Chem. Int. Ed. 57, 3238–3241 (2018).

Article  CAS  Google Scholar 

Cornforth, J. W., Cornforth, R. H., Donninger, C. & Popjak, G. Studies on the biosynthesis of cholesterol XIX. Steric course of hydrogen eliminations and of C–C bond formations in squalene biosynthesis. Proc. R. Soc. London, Ser. B 163, 492–514 (1966).

Article  CAS  Google Scholar 

Rinkel, J. et al. Mechanisms of the diterpene cyclases β-pinacene synthase from Dictyostelium discoideum and hydropyrene synthase from Streptomyces clavuligerus. Chem. Eur. J. 23, 10501–10505 (2017).

Article  CAS  PubMed  Google Scholar 

Reetz, M. T. Dytropic rearrangements, a new class of orbital-symmetry controlled reactions. Type I. Angew. Chem. Int. Ed. 11, 129–130 (1972).

Article  CAS  Google Scholar 

Hugelshofer, C. L. & Magauer, T. Dyotropic rearrangements in natural product total synthesis and biosynthesis. Nat. Prod. Rep. 34, 228–234 (2017).

Article  CAS  PubMed  Google Scholar 

Gutierrez, O. & Tantillo, D. J. Analogies between synthetic and biosynthetic reactions in which [1,2]-alkyl shifts are combined with other events: dyotropic, Schmidt, and carbocation rearrangements. J. Org. Chem. 77, 8845–8850 (2012).

Article  CAS  PubMed  Google Scholar 

Li, H. & Dickschat, J. S. Isotopic labelling experiments and enzymatic preparation of iso-casbenes with casbene synthase from Ricinus communis. Org. Chem. Front. 9, 795–801 (2022).

Article  CAS  Google Scholar 

Mitsuhashi, T., Rinkel, J., Okada, M., Abe, I. & Dickschat, J. S. Mechanistic characterization of two chimeric sesterterpene synthases from Penicillium. Chem. Eur. J. 23, 10053–10057 (2017).

Article  CAS  PubMed  Google Scholar 

Cornforth, J. W., Cornforth, R. H., Popjak, G. & Yengoyan, L. Studies on the biosynthesis of cholesterol XX. Steric course of decarboxylation of 5-pyrophosphomevalonate and of the carbon to carbon bond formation in the biosynthesis of farnesyl pyrophosphate. J. Biol. Chem. 241, 3970–3987 (1966).

Article  CAS  PubMed  Google Scholar 

Adamo, C. & Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J. Chem. Phys. 108, 664–675 (1998).

Article  CAS  Google Scholar 

Matsuda, S. P. T., Wilson, W. K. & Xiong, Q. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies. Org. Biomol. Chem. 4, 530–543 (2006).

Article  CAS  PubMed  Google Scholar 

Hong, Y. J. & Tantillo, D. J. A maze of dyotropic rearrangements and triple shifts: carbocation rearrangements connecting stemarene, stemodene, betaerdene, aphidicolene, and scopadulanol. J. Org. Chem. 83, 3780–3793 (2018).

Article  CAS  PubMed  Google Scholar 

Quan, Z., Hou, A., Goldfuss, B. & Dickschat, J. S. Mechanism of the bifunctional multiple product sesterterpene synthase AcAS from Aspergillus calidoustus. Angew. Chem. Int. Ed. 61, e202117273 (2022).

Article  CAS  Google Scholar 

Lemfack, M. C. et al. Reaction mechanism of the farnesyl pyrophosphate C-methyltransferase towards the biosynthesis of pre-sodorifen pyrophosphate by Serratia plymuthica 4Rx13. Sci. Rep. 11, 3182 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burger, U., Delay, A. & Mazenod, F. 1,2,3,4,5-Pentamethyl-5-acetyl-cyclopentadien-1,3, ein ungewöhnliches Keton. Helv. Chim. Acta 57, 2106–2111 (1974).

Article  CAS  Google Scholar 

Pace, V. et al. Efficient access to all-carbon quaternary and tertiary α-functionalized homoallyl-type aldehydes from ketones. Angew. Chem. Int. Ed. 56, 12677–12682 (2017).

Article  CAS  Google Scholar 

Dess, D. B. & Martin, J. C. Readily accessible 12-I-51 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 48, 4155–4156 (1983).

Article  CAS  Google Scholar 

Horner, L., Hoffmann, H., Wippel, H. G. & Klahre, G. Phosphinoxyde als olefiniemgsreagenzien. Chem. Ber. 92, 2499–2505 (1959).

Article  CAS  Google Scholar 

Wadsworth, W. S. & Emmons, W. D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc. 83, 1733–1738 (1961).

Article  CAS  Google Scholar 

Wise, M. L., Savage, T. J., Katahira, E. & Croteau, R. Monoterpene synthases from common sage (Salvia officinalis): cDNA Isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineol synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273, 14891–14899 (1998).

Article  CAS  PubMed  Google Scholar 

Nakano, C., Kim, H.-K. & Ohnishi, Y. Identification of the first bacterial monoterpene cyclase, a 1,8-cineole synthase, that catalyzes the direct conversion of geranyl diphosphate. ChemBioChem 12, 1988–1991 (2011).

Article  CAS  PubMed  Google Scholar 

Jamieson, C. S., Ohashi, M., Liu, F., Tang, Y. & Houk, K. N. The expanding world of biosynthetic pericyclases: cooperation of experiment and theory for discovery. Nat. Prod. Rep. 36, 698–713 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, B. et al. Enzyme-catalysed [6 + 4] cycloadditions in the biosynthesis of natural products. Nature 568, 122–126 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harmata, M. The (4 + 3)-cycloaddition reaction: simple allylic cations as dienophiles. Chem. Commun. 46, 8886–8903 (2010).

Article  CAS  Google Scholar 

Giets, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

Article 

留言 (0)

沒有登入
gif