Identification of Common and Specific Genes Involved in Mouse Models of Age-Related and Cyclophosphamide-Induced Diminished Ovarian Reserve

Testing and interpreting measures of ovarian reserve. a committee opinion. Fertil Steril. 2015;103(3):e9–17. https://doi.org/10.1016/j.fertnstert.2014.12.093.

Article  Google Scholar 

Fàbregues F, Ferreri J, Méndez M, et al. In vitro follicular activation and stem cell therapy as a novel treatment strategies in diminished ovarian reserve and primary ovarian insufficiency. Front Endocrinol (Lausanne). 2020;11:617704. https://doi.org/10.3389/fendo.2020.617704.

Article  PubMed  Google Scholar 

Jiao Z, Bukulmez O. Potential roles of experimental reproductive technologies in infertile women with diminished ovarian reserve. J Assist Reprod Genet. 2021;38(10):2507–17. https://doi.org/10.1007/s10815-021-02246-6.

Article  PubMed  PubMed Central  Google Scholar 

Levi AJ, Raynault MF, Bergh PA, et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9.

Article  CAS  PubMed  Google Scholar 

Christodoulaki A, Boel A, Tang M, et al. Prospects of germline nuclear transfer in women with diminished ovarian reserve. Frontiers in Endocrinology. 2021;12:635370. https://doi.org/10.3389/fendo.2021.635370.

Article  PubMed  PubMed Central  Google Scholar 

Pastore LM, Christianson MS, Stelling J, et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet. 2018;35(1):17–23. https://doi.org/10.1007/s10815-017-1058-4.

Article  PubMed  Google Scholar 

Liu H, Jiang C, La B, et al. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res & Therapy. 2021;12(1):317. https://doi.org/10.1186/s13287-021-02382-x.

Article  CAS  Google Scholar 

Huang P, Zhou Y, Tang W, et al. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granuloas cells in mice. J Nutr Biochem. 2022;101:108911. https://doi.org/10.1016/j.jnutbio.2021.108911.

Jiang L, Chen Y, Wang Q, et al. A Chinese practice guideline of the assisted reproductive technology strategies for women with advanced age. J Evid Based Med. 2019;12(2):167–84. https://doi.org/10.1111/jebm.12346.

Article  PubMed  Google Scholar 

Park SU. L Walsh, and K M Berkowitz, Mechanisms of ovarian aging. Reproduction. 2021;162(2):R19–33. https://doi.org/10.1530/REP-21-0022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

Article  Google Scholar 

Kim S, Kim S-W, Han S-J, et al. Molecular mechanism and prevention strategy of chemotherapy- and radiotherapy-induced ovarian damage. Int J Mol Sci. 2021;22(14):7484. https://doi.org/10.3390/ijms22147484

Hopeman MM, Cameron KE, Prewitt M, et al. A predictive model for chemotherapy-related diminished ovarian reserve in reproductive-age women. Fertil Steril. 2021;115(2):431–7. https://doi.org/10.1016/j.fertnstert.2020.08.003.

Article  PubMed  Google Scholar 

Spears N, Lopes F, Stefansdottir A, et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25(6):673–93. https://doi.org/10.1093/humupd/dmz027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Yu Q, Huang H, et al. Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Res Ther. 2018;9(1):81. https://doi.org/10.1186/s13287-018-0819-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin X, Zhao Y, Zhang T, et al. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nat Commun. 2022;13(1):914. https://doi.org/10.1038/s41467-022-28611-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun M, Wang S, Li Y, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013;4(4):80. https://doi.org/10.1186/scrt231.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yureneva S, Averkova V, Silachev D, et al. Searching for female reproductive aging and longevity biomarkers. Aging. 2021;13(12):16873–94. https://doi.org/10.18632/aging.203206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson CL, Côté J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004;18(6):602–16. https://doi.org/10.1101/gad.1182704.

Article  CAS  PubMed  Google Scholar 

Schneider A, Matkovich SJ, Saccon T, et al. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol. 2017;439:328–36. https://doi.org/10.1016/j.mce.2016.09.019.

Article  CAS  PubMed  Google Scholar 

Beverley R. M L Snook, and M A Brieño-Enríquez, Meiotic cohesin and variants associated with human reproductive aging and disease. Front Cell Dev Biol. 2021;9:710033. https://doi.org/10.3389/fcell.2021.710033.

Article  PubMed  PubMed Central  Google Scholar 

Oktay K, Turan V, Titus S, et al. BRCA mutations, DNA repair deficiency, and ovarian aging. Biol Reprod. 2015;93(3):67. https://doi.org/10.1095/biolreprod.115.132290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Titus S, Li F, Stobezki R, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):17221. https://doi.org/10.1126/scitranslmed.3004925.

Article  CAS  Google Scholar 

Govindaraj V. R Keralapura Basavaraju, and A J Rao, Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online. 2015;30(3):303–10. https://doi.org/10.1016/j.rbmo.2014.11.010.

Article  CAS  PubMed  Google Scholar 

Govindaraj V, Krishnagiri H, Chakraborty P, et al. Age-related changes in gene expression patterns of immature and aged rat primordial follicles. Syst Biol Reprod Med. 2017;63(1):37–48. https://doi.org/10.1080/19396368.2016.1267820.

Article  CAS  PubMed  Google Scholar 

Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood. 2006;107(11):4223–33. https://doi.org/10.1182/blood-2005-10-4240.

Article  CAS  PubMed  Google Scholar 

Sklavos MM, Giri N, Stratton P, et al. Anti-Müllerian hormone deficiency in females with Fanconi anemia. J Clin Endocrinol Metab. 2014;99(5):1608–14. https://doi.org/10.1210/jc.2013-3559.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piasecka-Srader J, Blanco FF, Delman DH, et al. Tamoxifen prevents apoptosis and follicle loss from cyclophosphamide in cultured rat ovaries. Biol Reprod. 2015;92(5):132. https://doi.org/10.1095/biolreprod.114.126136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pascuali N, Scotti L, Di Pietro M, et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.

Article  CAS  PubMed  Google Scholar 

Yuksel A, Bildik G, Senbabaoglu F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod. 2015;30(12):2926–35. https://doi.org/10.1093/humrep/dev256.

Article  CAS  PubMed  Google Scholar 

Zhao Z, Fan Q, Zhu Q, et al. Decreased fatty acids induced granulosa cell apoptosis in patients with diminished ovarian reserve. J Assist Reprod Genet. 2022;39(5):1105–14. https://doi.org/10.1007/s10815-022-02462-8.

Article  PubMed  PubMed Central  Google Scholar 

D’Avila ÂM, Biolchi V, Capp E, et al. Age, anti-müllerian hormone, antral follicles count to predict amenorrhea or oligomenorrhea after chemotherapy with cyclophosphamide. J Ovarian Res. 2015;8:82. https://doi.org/10.1186/s13048-015-0209-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lande Y, Fisch B, Tsur A, et al. Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro. Reprod Biomed Online. 2017;34(1):104–14. https://doi.org/10.1016/j.rbmo.2016.10.005.

Article  CAS  PubMed  Google Scholar 

Deng T, He J, Yao Q, et al. Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism. Reprod Sci. 2021;28(6):1718–32. https://doi.org/10.1007/s43032-021-00499-1.

Article  CAS  PubMed  Google Scholar 

Bukovsky A, Presl J. Ovarian function and the immune system. Med Hypotheses. 1979;5(4):415–36. https://doi.org/10.1016/0306-9877(79)90108-7.

Article  CAS  PubMed  Google Scholar 

Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science. 1969;166(3906):753–5.

Article  CAS  PubMed  Google Scholar 

Lliberos C, Liew SH, Zareie P, et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep. 2021;11(1):278. https://doi.org/10.1038/s41598-020-79488-4.

Article  CAS 

留言 (0)

沒有登入
gif