GRP78/BiP alleviates oxLDL-induced hepatotoxicity in familial hypercholesterolemia caused by missense variants of LDLR in a HepG2 cellular model

Turgeon RD, Barry AR, Pearson GJ. Familial hypercholesterolemia: review of diagnosis, screening, and treatment. Can Fam Physician. 2016;62(1):32–7.

PubMed  PubMed Central  Google Scholar 

Chora JR, Medeiros AM, Alves AC, Bourbon M. Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: Application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet Med. 2018;20(6):591–8.

Article  CAS  PubMed  Google Scholar 

Sørensen S, Ranheim T, Bakken KS, Leren TP, Kulseth MA. Retention of mutant low density lipoprotein receptor in endoplasmic reticulum (ER) leads to ER stress. J Biol Chem. 2006;281(1):468–76.

Article  PubMed  Google Scholar 

Li Y, Lu W, Schwartz AL, Bu G. Degradation of the LDL receptor class 2 mutants is mediated by a proteasome-dependent pathway. J Lipid Res. 2004;45(6):1084–91. Available from: https://doi.org/10.1194/jlr.M300482-JLR200

Chen Y, Bellamy WP, Seabra MC, Field MC, Ali BR. ER-associated protein degradation is a common mechanism underpinning numerous monogenic diseases including Robinow syndrome. Hum Mol Genet. 2005;14(17):2559–69.

Article  CAS  PubMed  Google Scholar 

Tveten K, Holla ØL, Ranheim T, Berge KE, Leren TP, Kulseth MA. 4-Phenylbutyrate restores the functionality of a misfolded mutant low-density lipoprotein receptor. FEBS J. 2007;274(8):1881–93.

Article  CAS  PubMed  Google Scholar 

Kizhakkedath P, John A, Al-Gazali L, Ali BR. Degradation routes of trafficking-defective VLDLR mutants associated with Dysequilibrium syndrome. Sci Rep. 2018;8(1):1–12.

Article  CAS  Google Scholar 

Gariballa N, Kizhakkedath P, Akawi N, John A, Ali BR. Endoglin wild type and variants associated with hereditary hemorrhagic telangiectasia type 1 undergo distinct cellular degradation pathways. Front Mol Biosci. 2022;9:828199. https://doi.org/10.3389/fmolb.2022.828199.

Mollazadeh H, Carbone F, Montecucco F, Pirro M, Sahebkar A. Oxidative burden in familial hypercholesterolemia. J Cell Physiol. 2018;233(8):5716–25.

Article  CAS  PubMed  Google Scholar 

Van Tits L, De Graaf J, Hak-Lemmers H, Bredie S, Demacker P, Holvoet P, et al. Increased levels of low-density lipoprotein oxidation in patients with familial hypercholesterolemia and in end-stage renal disease patients on hemodialysis. Lab Investig. 2003;83(1):13–21.

Article  PubMed  Google Scholar 

Gao S, Zhao D, Wang M, Zhao F, Han X, Qi Y, et al. Association Between Circulating Oxidized LDL and Atherosclerotic Cardiovascular Disease: A Meta-analysis of Observational Studies. Can J Cardiol. 2017;33(12):1624–32.

Article  PubMed  Google Scholar 

Yang L, Sun J, Li M, Long Y, Zhang D, Guo H, Huang RYJ. Oxidized Low-Density Lipoprotein Links Hypercholesterolemia and Bladder Cancer Aggressiveness by Promoting Cancer Stemness. Cancer Res. 2021;81(22):5720–32.

Article  CAS  PubMed  Google Scholar 

Burchill MA, Finlon JM, Goldberg AR, Gillen AE, Dahms PA, McMahan RH, et al. Oxidized Low-Density Lipoprotein Drives Dysfunction of the Liver Lymphatic System. Cmgh . 2021;11(2):573–95. Available from: https://doi.org/10.1016/j.jcmgh.2020.09.007

Sanson M, Augé N, Vindis C, Muller C, Bando Y, Thiers JC, et al. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: Prevention by oxygen-regulated protein 150 expression. Circ Res. 2009;104(3):328–36.

Article  CAS  PubMed  Google Scholar 

Yin X-M. Autophagy in Liver Diseases: A Matter of What to Remove and Whether to Keep. Liver Res. 2018;2(3):109–11.

Article  PubMed  PubMed Central  Google Scholar 

Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94. https://doi.org/10.1038/nrm3735.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramachandran A, Lebofsky M, Baines CP, Lemasters JJ, Jaeschke H. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic Res. 2011;45(2):156–64. https://doi.org/10.3109/10715762.2010.520319.

Article  CAS  PubMed  Google Scholar 

Wang X, Du H, Shao S, Bo T, Yu C, Chen W, et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology. 2018;68(1):62–77. https://doi.org/10.1002/hep.29788.

Article  CAS  PubMed  Google Scholar 

Newton K, Manning G. Necroptosis and Inflammation. Annu Rev Biochem. 2016;85:743–63.

Article  CAS  PubMed  Google Scholar 

Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, et al. The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity. 2013;39:443–52.

Article  CAS  PubMed  Google Scholar 

Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21. https://doi.org/10.1038/nchembio.83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dara L, Liu ZX, Kaplowitz N. Questions and controversies: the role of necroptosis in liver disease. Cell Death Discov . 2016;2(1):1–10. Available from: https://doi.org/10.1038/cddiscovery.2016.89

Li X, Wang TX, Huang X, Li Y, Sun T, Zang S, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int. 2020;40(6):1378–94.

Article  CAS  PubMed  Google Scholar 

Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 2019;10(6). Available from: https://doi.org/10.1038/s41419-019-1678-y

Gautheron J, Gores GJ. RCMP. Lytic cell death in metabolic liver disease. J Hepatol. 2020;73(2):394–408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X, Zhang Z, Zhang D, Fan D, Nie Y, et al. Gasdermin D Plays a Key Role as a Pyroptosis Executor of Non-Alcoholic Steatohepatitis in Humans and Mice. J Hepatol. 2018;68:773–82.

Article  CAS  PubMed  Google Scholar 

Liu Z, Wang M, Wang X, Bu Q, Wang Q, Su W, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. Redox Biol. 2022;52:102305. Available from: https://doi.org/10.1016/j.redox.2022.102305

Nass KJ, van den Berg EH, Faber KN, Schreuder TCMA, Blokzijl H, Dullaart RPF. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: The lifelines cohort study. Metabolism. 2017;72:37–46.

Article  CAS  PubMed  Google Scholar 

van den Berg EH, Wolters AAB, Dullaart RPF, Moshage H, Zurakowski D, de Meijer VEBH. Prescription of statins in suspected non-alcoholic fatty liver disease and high cardiovascular risk, a population-based study. Liver Int. 2019;39(7):1343–54.

Article  PubMed  PubMed Central  Google Scholar 

Bril F, Sninsky JJ, Baca AM, Superko HR, Sanchez PP, Biernacki Di, et al. Hepatic steatosis and insulin resistance, but not steatohepatitis, promote atherogenic dyslipidemia in NAFLD. J Clin Endocrinol Metab. 2016;101(2):644–52.

Article  CAS  PubMed  Google Scholar 

Kizhakkedath P, et al. Endoplasmic reticulum quality control of LDLR variants associated with familial hypercholesterolemia. FEBS Open Bio. 2019;9(11):1994–2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355–64.

Article  CAS  PubMed  Google Scholar 

Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the er to the Golgi. J Biol Chem . 2002;277(15):13045–52. Available from: https://doi.org/10.1074/jbc.M110636200

Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci. 2018;25(1):48. https://doi.org/10.1186/s12929-018-0453-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10(11):3787–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu S, Wong SL, Lau CW, Huang Y, Yu CM. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells. Biochem Biophys Res Commun. 2011;407(1):44–8.

Article  CAS  PubMed  Google Scholar 

Yan G, Jiang S, Yu L, Liu S. Oxidized low density lipoprotein (oxLDL) promotes mitochondrial dysfunction and induces apoptosis in retinal pigmented epithelium cells. Int J Clin Exp Pathol. 2017;10(2):1619–26.

CAS  Google Scholar 

Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18(1):11–23.

Article  CAS  PubMed  Google Scholar 

Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol. 2016;84:1–7.

Article  PubMed  Google Scholar 

Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11(1):1–8.

Article  Google Scholar 

Tian Y, Wong VWS, Chan HLY, Cheng ASL. Epigenetic regulation of hepatocellular carcinoma in non-alcoholic fatty liver disease. Semin Cancer Biol. 2013;23(6 PB):471–82.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif