Significant differences in efficiency between two commonly used ionophore solutions for assisted oocyte activation (AOA): a prospective comparison of ionomycin and A23187

Palermo G, et al. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

Article  CAS  PubMed  Google Scholar 

Palermo GD, et al. Intracytoplasmic sperm injection: state of the art in humans. Reproduction. 2017;154(6):F93–F110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moomjy M, et al. Implications of complete fertilization failure after intracytoplasmic sperm injection for subsequent fertilization and reproductive outcome. Hum Reprod. 1998;13(8):2212–6.

Article  CAS  PubMed  Google Scholar 

Vanden Meerschaut F, et al. Assisted oocyte activation following ICSI fertilization failure. Reprod BioMed Online. 2014;28(5):560–71.

Article  Google Scholar 

Amdani SN, Jones C, Coward K. Phospholipase C zeta (PLCzeta): oocyte activation and clinical links to male factor infertility. Adv Biol Regul. 2013;53(3):292–308.

Article  CAS  PubMed  Google Scholar 

Flaherty SP, Payne D, Matthews CD. Fertilization failures and abnormal fertilization after intracytoplasmic sperm injection. Hum Reprod. 1998;13(Suppl 1):155–64.

Article  PubMed  Google Scholar 

Bhattacharya S, et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: a randomised controlled trial. Lancet. 2001;357(9274):2075–9.

Article  CAS  PubMed  Google Scholar 

Bhattacharya S, Maheshwari A, Mollison J. Factors associated with failed treatment: an analysis of 121,744 women embarking on their first IVF cycles. PLoS One. 2013;8(12):e82249.

Article  PubMed  PubMed Central  Google Scholar 

Mahutte NG, Arici A. Failed fertilization: is it predictable? Curr Opin Obstet Gynecol. 2003;15(3):211–8.

Article  PubMed  Google Scholar 

Esfandiari N, et al. Complete failed fertilization after intracytoplasmic sperm injection--analysis of 10 years’ data. Int J Fertil Womens Med. 2005;50(4):187–92.

PubMed  Google Scholar 

Tesarik J, et al. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil Steril. 2002;78(3):619–24.

Article  PubMed  Google Scholar 

Kashir J, et al. Oocyte activation deficiency and assisted oocyte activation: mechanisms, obstacles and prospects for clinical application. Hum Reprod Open. 2022;2022(2):hoac003.

Article  PubMed  PubMed Central  Google Scholar 

Kashir J, Nomikos M, Lai FA. Phospholipase C zeta and calcium oscillations at fertilisation: the evidence, applications, and further questions. Adv Biol Regul. 2018;67:148–62.

Article  CAS  PubMed  Google Scholar 

Knott JG, et al. Transgenic RNA interference reveals role for mouse sperm phospholipase Czeta in triggering Ca2+ oscillations during fertilization. Biol Reprod. 2005;72(4):992–6.

Article  CAS  PubMed  Google Scholar 

Young C, et al. Phospholipase C zeta undergoes dynamic changes in its pattern of localization in sperm during capacitation and the acrosome reaction. Fertil Steril. 2009;91(5 Suppl):2230–42.

Article  CAS  PubMed  Google Scholar 

Jaffe LA, Cross NL, Picheral B. Studies of the voltage-dependent polyspermy block using cross-species fertilization of amphibians. Dev Biol. 1983;98(2):319–26.

Article  CAS  PubMed  Google Scholar 

McGuinness OM, et al. A direct measurement of increased divalent cation influx in fertilised mouse oocytes. Development. 1996;122(7):2199–206.

Article  CAS  PubMed  Google Scholar 

Cox LJ, et al. Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction. 2002;124(5):611–23.

Article  CAS  PubMed  Google Scholar 

Jones KT. Mammalian egg activation: from Ca2+ spiking to cell cycle progression. Reproduction. 2005;130(6):813–23.

Article  CAS  PubMed  Google Scholar 

Nasr-Esfahani MH, Deemeh MR, Tavalaee M. Artificial oocyte activation and intracytoplasmic sperm injection. Fertil Steril. 2010;94(2):520–6.

Article  PubMed  Google Scholar 

Saunders CM, et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129(15):3533–44.

Article  CAS  PubMed  Google Scholar 

Kashir J, et al. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update. 2010;16(6):690–703.

Article  CAS  PubMed  Google Scholar 

Torra-Massana M, et al. Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum Reprod. 2019;34(8):1494–504.

Article  CAS  PubMed  Google Scholar 

Tesarik J, Sousa M. More than 90% fertilization rates after intracytoplasmic sperm injection and artificial induction of oocyte activation with calcium ionophore. Fertil Steril. 1995;63(2):343–9.

Article  CAS  PubMed  Google Scholar 

Heindryckx B, et al. Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod. 2005;20(8):2237–41.

Article  CAS  PubMed  Google Scholar 

Ebner T, Montag M. Artificial oocyte activation: evidence for clinical readiness. Reprod BioMed Online. 2016;32(3):271–3.

Article  CAS  PubMed  Google Scholar 

Murugesu S, et al. Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis. Fertil Steril. 2017;108(3):468–482 e3.

Article  CAS  PubMed  Google Scholar 

Vasilev F, et al. Effects of ionomycin on egg activation and early development in starfish. PLoS One. 2012;7(6):e39231.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borges E Jr, et al. Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod BioMed Online. 2009;18(1):45–52.

Article  CAS  PubMed  Google Scholar 

Nikiforaki D, et al. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil Steril. 2016;105(3):798–806 e2.

Article  CAS  PubMed  Google Scholar 

Vanden Meerschaut F, et al. Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum Reprod. 2012;27(7):1977–84.

Article  Google Scholar 

Ebner T, et al. Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study. Reprod BioMed Online. 2015;30(4):359–65.

Article  CAS  PubMed  Google Scholar 

Ferrer-Buitrago M, et al. Single Ca(2+) transients vs oscillatory Ca(2+) signaling for assisted oocyte activation: limitations and benefits. Reproduction. 2018;155(2):R105–19.

Article  CAS  PubMed  Google Scholar 

Bonte D, et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil Steril. 2019;112(2):266–74.

Article  PubMed  Google Scholar 

Shan Y, et al. Assisted oocyte activation with calcium ionophore improves pregnancy outcomes and offspring safety in infertile patients: a systematic review and meta-analysis. Front Physiol. 2021;12:751905.

Article  PubMed  Google Scholar 

Versieren K, et al. Developmental competence of parthenogenetic mouse and human embryos after chemical or electrical activation. Reprod BioMed Online. 2010;21(6):769–75.

Article  PubMed  Google Scholar 

Bos-Mikich A, Whittingham DG, Jones KT. Meiotic and mitotic Ca2+ oscillations affect cell composition in resulting blastocysts. Dev Biol. 1997;182(1):172–9.

Article  CAS  PubMed  Google Scholar 

Ozil JP, Huneau D. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development. 2001;128(6):917–28.

Article  CAS  PubMed  Google Scholar 

Ozil JP, et al. Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol. 2006;300(2):534–44.

Article  CAS 

留言 (0)

沒有登入
gif