Glycyrrhinic acid and probiotics alleviate deoxynivalenol-induced cytotoxicity in intestinal epithelial cells

Afkhami-Poostchi A, Mashreghi M, Iranshahi M, Matin MM (2020) Use of a genetically engineered E. coli overexpressing beta-glucuronidase accompanied by glycyrrhizic acid, a natural and anti-inflammatory agent, for directed treatment of colon carcinoma in a mouse model. Int J Pharm 579:119159. https://doi.org/10.1016/j.ijpharm.2020.119159

Article  CAS  PubMed  Google Scholar 

Akutagawa K, Fujita T, Ouhara K, Takemura T, Tari M, Kajiya M, Matsuda S, Kuramitsu S, Mizuno N, Shiba H, Kurihara H (2019) Glycyrrhizic acid suppresses inflammation and reduces the increased glucose levels induced by the combination of porphyromonas gulae and ligature placement in diabetic model mice. Int Immunopharmacol 68:30–38. https://doi.org/10.1016/j.intimp.2018.12.045

Article  CAS  PubMed  Google Scholar 

Alassane-Kpembi I, Pinton P, Hupe JF, Neves M, Lippi Y, Combes S, Castex M, Oswald IP (2018) Saccharomyces cerevisiae Boulardii reduces the deoxynivalenol-induced alteration of the intestinal transcriptome. Toxins. https://doi.org/10.3390/toxins10050199

Article  PubMed  PubMed Central  Google Scholar 

Alfajaro MM, Kim HJ, Park JG, Ryu EH, Kim JY, Jeong YJ, Kim DS, Hosmillo M, Son KY, Lee JH, Kwon HJ, Ryu YB, Park SJ, Park SI, Lee WS, Cho KO (2012) Anti-rotaviral effects of glycyrrhiza uralensis extract in piglets with rotavirus diarrhea. Virol J 9:310. https://doi.org/10.1186/1743-422X-9-310

Article  PubMed  PubMed Central  Google Scholar 

Are A, Aronsson L, Wang S, Greicius G, Lee YK, Gustafsson JA, Pettersson S, Arulampalam V (2008) Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci U S A 105:1943–1948. https://doi.org/10.1073/pnas.0711734105

Article  PubMed  PubMed Central  Google Scholar 

Bentz GL, Lowrey AJ, Horne DC, Nguyen V, Satterfield AR, Ross TD, Harrod AE, Uchakina ON, McKallip RJ (2019) Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS ONE 14:e0217578. https://doi.org/10.1371/journal.pone.0217578

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang C, Wang K, Zhou SN, Wang XD, Wu JE (2017) Protective effect of Saccharomyces boulardii on deoxynivalenol-induced injury of porcine macrophage via attenuating p38 MAPK signal pathway. Appl Biochem Biotechnol 182:411–427. https://doi.org/10.1007/s12010-016-2335-x

Article  CAS  PubMed  Google Scholar 

de Souza M, Baptista AAS, Valdiviezo MJJ, Justino L, Menck-Costa MF, Ferraz CR, da Gloria EM, Verri WA Jr, Bracarense A (2020) Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon 185:203–212. https://doi.org/10.1016/j.toxicon.2020.07.002

Article  CAS  PubMed  Google Scholar 

Faeste CK, Solhaug A, Gaborit M, Pierre F, Massotte D (2022) Neurotoxic potential of deoxynivalenol in murine brain cell lines and primary hippocampal cultures. Toxins. https://doi.org/10.3390/toxins14010048

Article  PubMed  PubMed Central  Google Scholar 

Faucet-Marquis V, Joannis-Cassan C, Hadjeba-Medjdoub K, Ballet N, Pfohl-Leszkowicz A (2014) Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: case of aflatoxin B(1), zearalenone and ochratoxin A. Appl Microbiol Biotechnol 98:7583–7596. https://doi.org/10.1007/s00253-014-5917-y

Article  CAS  PubMed  Google Scholar 

Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Suppl 1):S15-28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031

Article  PubMed  Google Scholar 

Garcia GR, Payros D, Pinton P, Dogi CA, Laffitte J, Neves M, Gonzalez Pereyra ML, Cavaglieri LR, Oswald IP (2018) Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch Toxicol 92:983–993. https://doi.org/10.1007/s00204-017-2083-x

Article  CAS  PubMed  Google Scholar 

He Y, Yin X, Dong J, Yang Q, Wu Y, Gong Z (2021) Transcriptome analysis of Caco-2 cells upon the exposure of mycotoxin deoxynivalenol and its acetylated derivatives. Toxins. https://doi.org/10.3390/toxins13020167

Article  PubMed  PubMed Central  Google Scholar 

Holanda DM, Yiannikouris A, Kim SW (2020) Investigation of the efficacy of a postbiotic yeast cell wall-based blend on newly-weaned pigs under a dietary challenge of multiple mycotoxins with emphasis on deoxynivalenol. Toxins. https://doi.org/10.3390/toxins12080504

Article  PubMed  PubMed Central  Google Scholar 

Huang W, Chang J, Wang P, Liu C, Yin Q, Zhu Q, Lu F, Gao T (2018) Effect of the combined compound probiotics with mycotoxin-degradation enzyme on detoxifying aflatoxin B1 and zearalenone. J Toxicol Sci 43:377–385. https://doi.org/10.2131/jts.43.377

Article  CAS  PubMed  Google Scholar 

Huang W, Chang J, Wang P, Liu C, Yin Q, Song A, Gao T, Dang X, Lu F (2019) Effect of compound probiotics and mycotoxin degradation enzymes on alleviating cytotoxicity of swine jejunal epithelial cells induced by aflatoxin B1 and zearalenone. Toxins. https://doi.org/10.3390/toxins11010012

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Zheng C, Song B, Wang L, Xiao H, Jiang Z (2021) Resveratrol ameliorates intestinal damage challenged with deoxynivalenol through mitophagy in vitro and in vivo. Front Vet Sci 8:807301. https://doi.org/10.3389/fvets.2021.807301

Article  PubMed  Google Scholar 

Huwig A, Freimund S, Kappeli O, Dutler H (2001) Mycotoxin detoxication of animal feed by different adsorbents. Toxicol Lett 122:179–188. https://doi.org/10.1016/s0378-4274(01)00360-5

Article  CAS  PubMed  Google Scholar 

Jha R, Das R, Oak S, Mishra P (2020) Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals. https://doi.org/10.3390/ani10101863

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Chang J, Wang P, Yin QQ, Huang WW, Liu CQ, Bai XX, Zhu Q, Gao TZ, Zhou P (2019) Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol. AMB Expr 9:137. https://doi.org/10.1186/s13568-019-0863-9

Article  CAS  Google Scholar 

Ma K, Bai Y, Li J, Ren Z, Li J, Zhang J, Shan A (2022) Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets. Food Funct 13:3905–3916. https://doi.org/10.1039/d2fo00185c

Article  CAS  PubMed  Google Scholar 

Maake TW, Aiyegoro OA, Adeleke MA (2021) Effects of Lactobacillus rhamnosus and Enterococcus faecalis supplementation as direct-fed microbials on rumen microbiota of boer and speckled goat breeds. Vet Sci. https://doi.org/10.3390/vetsci8060103

Article  PubMed  PubMed Central  Google Scholar 

Maidana LG, Gerez J, Hohmann MNS, Verri WA Jr, Bracarense A (2021) Lactobacillus plantarum metabolites reduce deoxynivalenol toxicity on jejunal explants of piglets. Toxicon 203:12–21. https://doi.org/10.1016/j.toxicon.2021.09.023

Article  CAS  PubMed  Google Scholar 

Mertl M, Daniel H, Kottra G (2008) Substrate-induced changes in the density of peptide transporter PEPT1 expressed in xenopus oocytes. Am J Physiol 295:C1332–C1343. https://doi.org/10.1152/ajpcell.00241.2008

Article  CAS  Google Scholar 

Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S (2020) Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 60:1346–1374. https://doi.org/10.1080/10408398.2019.1571479

Article  CAS  PubMed  Google Scholar 

Nathanail AV, Gibson B, Han L, Peltonen K, Ollilainen V, Jestoi M, Laitila A (2016) The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer’s wort. Food Chem 203:448–455. https://doi.org/10.1016/j.foodchem.2016.02.070

Article  CAS  PubMed  Google Scholar 

Oc P, Giri R, Hoedt EC, McGuckin MA, Begun J, Morrison M (2018) Enterococcus faecalis AHG0090 is a genetically tractable bacterium and produces a secreted peptidic bioactive that suppresses nuclear factor kappa B activation in human gut epithelial cells. Front Immunol 9:790. https://doi.org/10.3389/fimmu.2018.00790

Article  CAS  Google Scholar 

Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics—a review. J Food Sci Technol 52:7577–7587. https://doi.org/10.1007/s13197-015-1921-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8:39–69. https://doi.org/10.1080/10937400590889458

Article  CAS  PubMed  Google Scholar 

Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, Petrov K (2022) The complex role of Lactic acid bacteria in food detoxification. Nutrients. https://doi.org/10.3390/nu14102038

Article  PubMed  PubMed Central  Google Scholar 

Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins 6:1615–1643. https://doi.org/10.3390/toxins6051615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pitt JI, Miller JD (2017) A concise history of mycotoxin research. J Agric Food Chem 65:7021–7033. https://doi.org/10.1021/acs.jafc.6b04494

Article  CAS  PubMed  Google Scholar 

Qu L, Chen C, He W, Chen Y, Li Y, Wen Y, Zhou S, Jiang Y, Yang X, Zhang R, Shen L (2019) Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway. Am J Transl Res 11:2042–2055

CAS  PubMed  PubMed Central  Google Scholar 

Richard JL (2007) Some major mycotoxins and their mycotoxicoses–an overview. Int J Food Microbiol 119:3–10. https://doi.org/10.1016/j.ijfoodmicro.2007.07.019

留言 (0)

沒有登入
gif