Plant commensal type VII secretion system causes iron leakage from roots to promote colonization

Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovács, Á. T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 19, 600–614 (2021).

Article  CAS  PubMed  Google Scholar 

De Coninck, B., Timmermans, P., Vos, C., Cammue, B. P. A. & Kazan, K. What lies beneath: belowground defense strategies in plants. Trends Plant Sci. 20, 91–101 (2015).

Article  PubMed  Google Scholar 

Haas, D. & Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005).

Article  CAS  PubMed  Google Scholar 

Lugtenberg, B. J. J. J., Dekkers, L. & Bloemberg, G. V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490 (2001).

Article  CAS  PubMed  Google Scholar 

Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

Article  CAS  PubMed  Google Scholar 

Siddiqui, Z. A. (Ed) in PGPR: Biocontrol and Biofertilization 111–142 (Springer, 2006).

Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

Article  CAS  PubMed  Google Scholar 

Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

Article  CAS  PubMed  Google Scholar 

Harbort, C. J. et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825–837 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verbon, E. H. et al. Iron and immunity. Annu. Rev. Phytopathol. 55, 355–375 (2017).

Article  CAS  PubMed  Google Scholar 

Herlihy, J. H., Long, T. A. & McDowell, J. M. Iron homeostasis and plant immune responses: recent insights and translational implications. J. Biol. Chem. 295, 13444–13457 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Z. et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep. 29, 1192–1202.e5 (2019).

Article  CAS  PubMed  Google Scholar 

Chang, J. H., Desveaux, D. & Creason, A. L. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu. Rev. Phytopathol. 52, 317–345 (2014).

Article  CAS  PubMed  Google Scholar 

Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

Article  CAS  PubMed  Google Scholar 

Abdallah, A. M. et al. Type VII secretion — Mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

Article  CAS  PubMed  Google Scholar 

Conrad, W. H. et al. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc. Natl Acad. Sci. USA 114, 1371–1376 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Leon, J. et al. Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis. J. Biol. Chem. 287, 44184–44191 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Q., Aguilera, J., Reyes, S. V. & Sun, J. Membrane insertion of Mycobacterium tuberculosis EsxA in cultured lung epithelial cells. Preprint at bioRxiv https://doi.org/10.1101/2020.04.09.035238 (2020).

Baptista, C., Barreto, H. C. & São-José, C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS ONE 8, e67840 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huppert, L. A. et al. The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE 9, e96267 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Sysoeva, T. A., Zepeda-Rivera, M. A., Huppert, L. A. & Burton, B. M. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proc. Natl Acad. Sci. USA 111, 7653–7658 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y. et al. Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis. Plant Cell Environ. 44, 1663–1678 (2021).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. Mol. Plant Microbe Interact. 30, 53–62 (2017).

Article  CAS  PubMed  Google Scholar 

Zhang, H. et al. Bacillus velezensis tolerance to the induced oxidative stress in root colonization contributed by the two-component regulatory system sensor ResE. Plant Cell Environ. 44, 3094–3102 (2021).

Article  CAS  PubMed  Google Scholar 

Xiong, Q. et al. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility. Appl. Microbiol. Biotechnol. 104, 7177–7185 (2020).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. Induced root-secreted d-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner. Appl. Microbiol. Biotechnol. 104, 785–797 (2020).

Article  CAS  PubMed  Google Scholar 

Dong, X. et al. Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 and its effect on biofilm formation. Biochem. Biophys. Res. Commun. 503, 784–790 (2018).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. Root-secreted spermine binds to Bacillus amyloliquefaciens SQR9 histidine kinase KinD and modulates biofilm formation. Mol. Plant Microbe Interact. 33, 423–432 (2020).

Article  CAS  PubMed  Google Scholar 

Colangelo, E. P. & Guerinot, M. L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16, 3400–3412 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trapet, P. L. et al. Mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles. J. Exp. Bot. 72, 2231–2241 (2021).

Article  CAS  PubMed  Google Scholar 

Hsiao, P. Y., Cheng, C. P., Koh, K. W. & Chan, M. T. The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. Sci. Rep. 7, 9175 (2017).

Xing, Y. et al. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization. Plant Cell 33, 2015–2031 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Dangol, S., Chen, Y., Hwang, B. K. & Jwa, N. S. Iron- and reactive oxygen species-dependent ferroptotic cell death in rice–Magnaporthe oryzae interactions. Plant Cell 31, 189–209 (2019).

Article  CAS  PubMed  Google Scholar 

Sun, L. et al. Restriction of iron loading into developing seeds by a YABBY transcription factor safeguards successful reproduction in Arabidopsis. Mol. Plant 14, 1624–1639 (2021).

Article  CAS  PubMed  Google Scholar 

Pescador, L. et al. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. J. Exp. Bot. 73, 584–595 (2022).

Article  CAS  PubMed  Google Scholar 

Yu, K. et al. Rhizosphere-associated Pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Curr. Biol. 29, 3913–3920.e4 (2019).

Article  CAS  PubMed  Google Scholar 

Zamioudis, C., Hanson, J. & Pieterse, C. M. J. ß-glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 204, 368–379 (2014).

Article  CAS  PubMed  Google Scholar 

Zamioudis, C. et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 84, 309–322 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif