Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation

Buzsaki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).

Article  CAS  PubMed  Google Scholar 

Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kollo, M. et al. CHIME: CMOS-hosted in vivo microelectrodes for massively scalable neuronal recordings. Front. Neurosci. 14, 834 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Obaid, A. et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. 6, eaay2789 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilletti, A. & Muthuswamy, J. Brain micromotion around implants in the rodent somatosensory cortex. J. Neural Eng. 3, 189–195 (2006).

Article  PubMed  Google Scholar 

Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

Article  CAS  PubMed  Google Scholar 

Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

Article  PubMed  Google Scholar 

Williams, J. C., Rennaker, R. L. & Kipke, D. R. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res. Protoc. 4, 303–313 (1999).

Article  CAS  Google Scholar 

Kozai, T. D. Y. et al. Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials 35, 9255–9268 (2014).

Article  CAS  PubMed  Google Scholar 

Khodagholy, D. et al. Highly conformable conducting polymer electrodes for in vivo recordings. Adv. Mater. 23, H268–H272 (2011).

Article  CAS  PubMed  Google Scholar 

Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, T.-i et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

Article  CAS  PubMed  Google Scholar 

Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21–31 (2019).

Article  CAS  PubMed  Google Scholar 

Guan, S. et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci. Adv. 5, eaav2842 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, T.-M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

Article  CAS  PubMed  Google Scholar 

Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Buzsáki, G. et al. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86, 92–105 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zou, L. et al. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nat. Commun. 12, 5871 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCall, J. G. et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8, 2413–2428 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCall, J. G. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 12, 219–237 (2017).

Article  CAS  PubMed  Google Scholar 

Gao, L. et al. Free-standing nanofilm electrode arrays for long-term stable neural interfacings. Adv. Mater. 34, e2107343 (2022).

Article  PubMed  Google Scholar 

Kozai, T. D. Y. & Kipke, D. R. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods 184, 199–205 (2009).

Article  CAS  PubMed  Google Scholar 

Zhao, Z. et al. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17, 4588–4595 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watakabe, A. et al. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93, 144–157 (2015).

Article  PubMed  Google Scholar 

Bennett, A. et al. Thermal stability as a determinant of AAV serotype identity. Mol. Ther. Methods Clin. Dev. 6, 171–182 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Owen, S. F., Max, H. L. & Anatol, C. K. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Asperen, J. V. et al. Determining glioma cell invasion and proliferation in ex vivo organotypic mouse brain slices using whole-mount immunostaining and tissue clearing. STAR Protoc. 3, 101703 (2022).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif