RANKL+ senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics

DiBiase, A. T. et al. Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: a multicenter randomized clinical trial. Am. J. Orthod. Dentofacial Orthop. 150, 918–927 (2016).

Article  PubMed  Google Scholar 

de Souza, B. D. M. et al. Incidence of root resorption after concussion, subluxation, lateral luxation, intrusion, and extrusion: a systematic review. Clin. Oral. Investig. 24, 1101–1111 (2020).

Article  PubMed  Google Scholar 

Iglesias-Linares, A. & Hartsfield, J. K. Jr. Cellular and molecular pathways leading to external root resorption. J. Dent. Res. 96, 145–152 (2017).

Article  PubMed  Google Scholar 

Jiang, H., Kitaura, H., Liu, L., Mizoguchi, I. & Liu, S. The miR-155-5p inhibits osteoclast differentiation through targeting CXCR2 in orthodontic root resorption. J. Periodontal Res. 56, 761–773 (2021).

Article  PubMed  Google Scholar 

Kamat, M., Puranik, R., Vanaki, S. & Kamat, S. An insight into the regulatory mechanisms of cells involved in resorption of dental hard tissues. J. Oral. Maxillofac Pathol. 17, 228–233 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Boabaid, F., Berry, J. E., Koh, A. J., Somerman, M. J. & McCcauley, L. K. The role of parathyroid hormone-related protein in the regulation of osteoclastogenesis by cementoblasts. J. Periodontol. 75, 1247–1254 (2004).

Article  PubMed  Google Scholar 

Nakao, A. et al. PTHrP induces Notch signaling in periodontal ligament cells. J. Dent. Res. 88, 551–556 (2009).

Article  PubMed  Google Scholar 

Lee, S. Y., Yoo, H. I. & Kim, S. H. CCR5-CCL axis in PDL during orthodontic biophysical force application. J. Dent. Res. 94, 1715–1723 (2015).

Article  PubMed  Google Scholar 

Chen, D. et al. Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Pharmacol. Res. 159, 104944 (2020).

Article  PubMed  Google Scholar 

Zhao, N., Foster, B. L. & Bonewald, L. F. The cementocyte-an osteocyte relative? J. Dent. Res. 95, 734–741 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Fukushima, H., Kajiya, H., Takada, K., Okamoto, F. & Okabe, K. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur. J. Oral. Sci 111, 346–352 (2003).

Article  PubMed  Google Scholar 

Zhao, N. et al. Isolation and functional analysis of an immortalized murine cementocyte cell line, IDG-CM6. J. Bone. Miner. Res. 31, 430–442 (2016).

Article  PubMed  Google Scholar 

Yamamoto, T. et al. Mechanical stress induces expression of cytokines in human periodontal ligament cells. Oral. Dis. 12, 171–175 (2006).

Article  PubMed  Google Scholar 

Son, G. Y., Yang, Y. M., Park, W. S., Chang, I. & Shin, D. M. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J. Dent. Res. 94, 473–481 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Yamaguchi, M. et al. Caspase-mediated apoptosis by compressive force induces RANKL in cementoblasts. Int. J. Oral Health Sci 16, 31–38 (2018).

Google Scholar 

Diercke, K., Kohl, A., Lux, C. J. & Erber, R. IL-1β and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J. Orofac. Orthop. 73, 397–412 (2012).

Article  PubMed  Google Scholar 

Tanaka, T., Morioka, T., Ayasaka, N., Iijima, T. & Kondo, T. Endocytosis in odontoclasts and osteoclasts using microperoxidase as a tracer. J. Dent. Res. 69, 883–889 (1990).

Article  PubMed  Google Scholar 

da Silva, L. A. B. et al. Effect of root surface treatment with denusomab after delayed tooth replantation. Clin. Oral Investig. 25, 1255–1264 (2021).

Article  PubMed  Google Scholar 

Levin, L., Bryson, E. C., Caplan, D. & Trope, M. Effect of topical alendronate on root resorption of dried replanted dog teeth. Dent. Traumatol 17, 120–126 (2001).

Article  PubMed  Google Scholar 

Di Micco, R., Krizhanovsky, V. & Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell. Biol. 22, 75–95 (2021).

Article  PubMed  Google Scholar 

Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

Article  PubMed  Google Scholar 

Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell. 48, 158–167 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Tiwari, V. & Wilson, D. M. 3rd DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105, 237–257 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wang, L. et al. FBW7 mediates senescence and pulmonary fibrosis through telomere uncapping. Cell. Metab. 32, 860–877.e869 (2020).

Article  PubMed  Google Scholar 

Bae, W. J., Park, J. S., Kang, S. K., Kwon, I. K. & Kim, E. C. Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts. Int. J. Mol. Sci. 19, 1742 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Liu, H. et al. Compressive force-induced LincRNA-p21 inhibits mineralization of cementoblasts by impeding autophagy. Faseb.J. 36, e22120 (2022).

PubMed  Google Scholar 

Campaner, S. et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat. Cell. Biol. 12, 54–59 (2010).

Article  PubMed  Google Scholar 

Chen, L. et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 18, e12951 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

Article  PubMed  Google Scholar 

Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Yin, Y., Chen, H., Wang, Y., Zhang, L. & Wang, X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J. Extracell. Vesicles 10, e12154 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Yan, C., Xu, Z. & Huang, W. Cellular senescence affects cardiac regeneration and repair in ischemic heart disease. Aging Dis. 12, 552–569 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Honda, Y. et al. Augmentation of bone regeneration by depletion of stress-induced senescent cells using catechin and senolytics. Int. J. Mol. Sci. 21, 4213 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513–532 (2020).

Article  PubMed  Google Scholar 

Yao, W. et al. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Arch. Oral Biol. 73, 88–93 (2017).

Article  PubMed  Google Scholar 

Ullrich, N. et al. The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain-an in vitro study of human periodontal ligament fibroblasts. Int. J. Oral Sci. 11, 33 (2019).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif