Nuclear magnetic resonance-determined lipoprotein profile and risk of breast cancer: a Mendelian randomization study

Feingold KR. Introduction to Lipids and Lipoproteins. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., editors. Endotext. South Dartmouth (MA): Copyright © 2000–2022, MDText.com, Inc.; 2000.

Cedó L, Reddy ST, Mato E, Blanco-Vaca F, Escolà-Gil JC (2019) HDL and LDL: potential new players in breast cancer development. J Clin Med. https://doi.org/10.3390/jcm8060853

Article  PubMed  PubMed Central  Google Scholar 

Revilla G, Cedó L, Tondo M, Moral A, Pérez JI, Corcoy R et al (2021) LDL, HDL and endocrine-related cancer: from pathogenic mechanisms to therapies. Semin Cancer Biol 73:134–157. https://doi.org/10.1016/j.semcancer.2020.11.012

Article  CAS  PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–49. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Pedersen KM, Çolak Y, Bojesen SE, Nordestgaard BG (2020) Low high-density lipoprotein and increased risk of several cancers: 2 population-based cohort studies including 116,728 individuals. J Hematol Oncol 13(1):129. https://doi.org/10.1186/s13045-020-00963-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni H, Liu H, Gao R (2015) Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS One 10(11):e0142669. https://doi.org/10.1371/journal.pone.0142669

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M et al (2016) Apolipoproteins, lipids and risk of cancer. Int J Cancer 138(11):2648–2656. https://doi.org/10.1002/ijc.30013

Article  CAS  PubMed  Google Scholar 

Urbina EM, McCoy CE, Gao Z, Khoury PR, Shah AS, Dolan LM et al (2017) Lipoprotein particle number and size predict vascular structure and function better than traditional lipids in adolescents and young adults. J Clin Lipidol 11(4):1023–1031. https://doi.org/10.1016/j.jacl.2017.05.011

Article  PubMed  PubMed Central  Google Scholar 

Flote VG, Vettukattil R, Bathen TF, Egeland T, McTiernan A, Frydenberg H et al (2016) Lipoprotein subfractions by nuclear magnetic resonance are associated with tumor characteristics in breast cancer. Lipids Health Dis 15:56. https://doi.org/10.1186/s12944-016-0225-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith GD, Ebrahim S (2003) “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22. https://doi.org/10.1093/ije/dyg070

Article  PubMed  Google Scholar 

Nowak C, Ärnlöv J (2018) A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat Commun 9(1):3957. https://doi.org/10.1038/s41467-018-06467-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson KE, Siewert KM, Klarin D, Damrauer SM, Chang KM, Tsao PS et al (2020) The relationship between circulating lipids and breast cancer risk: a Mendelian randomization study. PLoS Med 17(9):e1003302. https://doi.org/10.1371/journal.pmed.1003302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan VY, Bull CJ, Biernacka KM, Teumer A, Richardson TG, Sanderson E et al (2021) Investigation of the interplay between circulating lipids and IGF-I and relevance to breast cancer risk: an observational and mendelian randomization study. Cancer Epidemiol Biomarkers Prev https://doi.org/10.1158/1055-9965.Epi-21-0315

Article  PubMed  PubMed Central  Google Scholar 

His M, Dartois L, Fagherazzi G, Boutten A, Dupré T, Mesrine S et al (2017) Associations between serum lipids and breast cancer incidence and survival in the E3N prospective cohort study. Cancer causes & control : CCC 28(1):77–88. https://doi.org/10.1007/s10552-016-0832-4

Article  PubMed  Google Scholar 

Moreno-Gordaliza E, van der Lee SJ, Demirkan A, van Duijn CM, Kuiper J, Lindenburg PW et al (2016) A novel method for serum lipoprotein profiling using high performance capillary isotachophoresis. Anal Chim Acta 944:57–69. https://doi.org/10.1016/j.aca.2016.09.038

Article  CAS  PubMed  Google Scholar 

Suna T, Salminen A, Soininen P, Laatikainen R, Ingman P, Mäkelä S et al (2007) 1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps. NMR Biomed 20(7):658–672. https://doi.org/10.1002/nbm.1123

Article  CAS  PubMed  Google Scholar 

Kettunen J, Demirkan A, Würtz P, Draisma HH, Haller T, Rawal R et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7:11122. https://doi.org/10.1038/ncomms11122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikäinen LP et al (2012) Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet 44(3):269–276. https://doi.org/10.1038/ng.1073

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallois A, Mefford J, Ko A, Vaysse A, Julienne H, Ala-Korpela M et al (2019) A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat Commun 10(1):4788. https://doi.org/10.1038/s41467-019-12703-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chasman DI, Paré G, Mora S, Hopewell JC, Peloso G, Clarke R et al (2009) Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet 5(11):e1000730. https://doi.org/10.1371/journal.pgen.1000730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G et al (2020) Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 52(6):572–581. https://doi.org/10.1038/s41588-020-0609-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551(7678):92–94. https://doi.org/10.1038/nature24284

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J et al (2019) Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 28(1):166–174. https://doi.org/10.1093/hmg/ddy327

Article  CAS  PubMed  Google Scholar 

Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295. https://doi.org/10.1038/ng.3211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632

Article  CAS  PubMed  Google Scholar 

Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58. https://doi.org/10.1038/nature09298

Article  CAS  PubMed  Google Scholar 

Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665. https://doi.org/10.1002/gepi.21758

Article  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

Article  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2015) Multivariable mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181(4):251–260. https://doi.org/10.1093/aje/kwu283

Article  PubMed  PubMed Central  Google Scholar 

Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR et al (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47(11):1228–1235. https://doi.org/10.1038/ng.3404

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debik J, Schäfer H, Andreassen T, Wang F, Fang F, Cannet C et al (2022) Lipoprotein and metabolite associations to breast cancer risk in the HUNT2 study. Br J Cancer. https://doi.org/10.1038/s41416-022-01924-1

Article  PubMed  Google Scholar 

Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM (2009) Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation 119(7):931–939. https://doi.org/10.1161/circulationaha.108.816181

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif