Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice

Kim TH, Jeon WY, Ji Y et al (2021) Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials 275:120948. https://doi.org/10.1016/j.biomaterials.2021.120948

Article  CAS  PubMed  Google Scholar 

Zhu W, Zhai X, Jia Z, Wang Y, Mo Y (2022) Bioinformatics analysis of sequential gene expression profiling after skin and skeletal muscle wound in mice. Leg Med (Tokyo) 54:101982. https://doi.org/10.1016/j.legalmed.2021.101982

Article  CAS  PubMed  Google Scholar 

Peyron PA, Colomb S, Becas D et al (2021) Cytokines as new biomarkers of skin wound vitality. Int J Legal Med 135:2537–2545. https://doi.org/10.1007/s00414-021-02659-z

Article  PubMed  Google Scholar 

Kuninaka Y, Ishida Y, Nosaka M et al (2020) Forensic pathological study on temporal appearance of dendritic cells in skin wounds. Int J Legal Med 134:597–601. https://doi.org/10.1007/s00414-019-02185-z

Article  PubMed  Google Scholar 

Grellner W (2002) Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Sci Int 130:90–96. https://doi.org/10.1016/s0379-0738(02)00342-0

Article  CAS  PubMed  Google Scholar 

Dewan MC, Rattani A, Gupta S et al (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 130(4):1080–1097. https://doi.org/10.3171/2017.10.JNS17352

Article  Google Scholar 

Niedecker A, Huhn R, Ritz-Timme S, Mayer F (2021) Complex challenges of estimating the age and vitality of muscle wounds: a study with matrix metalloproteinases and their inhibitors on animal and human tissue samples. Int J Legal Med 135:1843–1853. https://doi.org/10.1007/s00414-021-02563-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birincioğlu İ, Akbaba M, Alver A et al (2016) Determination of skin wound age by using cytokines as potential markers. J Forensic Leg Med 44:14–19. https://doi.org/10.1016/j.jflm.2016.08.011

Article  PubMed  Google Scholar 

Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236. https://doi.org/10.1007/BF01369816

Article  CAS  PubMed  Google Scholar 

Wang Y, Yamamoto Y, Kuninaka Y, Kondo T, Furukawa F (2015) Forensic Potential of MMPs and CC Chemokines for Wound Age Determination. J Forensic Sci 60:1511–1515. https://doi.org/10.1111/1556-4029.12831

Article  CAS  PubMed  Google Scholar 

Lefrancais E, Roga S, Gautier V et al (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA 109:1673–1678. https://doi.org/10.1073/pnas.1115884109

Article  PubMed  PubMed Central  Google Scholar 

Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490. https://doi.org/10.1016/j.immuni.2005.09.015

Article  CAS  PubMed  Google Scholar 

Perez F, Ruera CN, Miculan E et al (2020) IL-33 Alarmin and Its Active Proinflammatory Fragments Are Released in Small Intestine in Celiac Disease. Front Immunol 11:581445. https://doi.org/10.3389/fimmu.2020.581445

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imai Y, Yasuda K, Sakaguchi Y et al (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA 110:13921–13926. https://doi.org/10.1073/pnas.1307321110

Article  PubMed  PubMed Central  Google Scholar 

Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N (2020) Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369(6501):eaay1813. https://doi.org/10.1126/science.aay1813

Article  CAS  PubMed  Google Scholar 

Oshio T, Komine M, Tsuda H et al (2017) Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. J Dermatol Sci 85:106–114. https://doi.org/10.1016/j.jdermsci.2016.10.008

Article  CAS  PubMed  Google Scholar 

Liew FY (2012) IL-33: a Janus cytokine. Ann Rheum Dis 71(Suppl 2):i101–i104. https://doi.org/10.1136/annrheumdis-2011-200589

Article  CAS  PubMed  Google Scholar 

Komi DEA, Khomtchouk K, Santa Maria PL (2020) A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin Rev Allergy Immunol 58:298–312. https://doi.org/10.1007/s12016-019-08729-w

Article  CAS  PubMed  Google Scholar 

Cannavo SP, Bertino L, Di Salvo E, Papaianni V, Ventura-Spagnolo E, Gangemi S (2019) Possible Roles of IL-33 in the Innate-Adaptive Immune Crosstalk of Psoriasis Pathogenesis. Mediators Inflamm 2019:7158014. https://doi.org/10.1155/2019/7158014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dagher R, Copenhaver AM, Besnard V et al (2020) IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun 11:4786. https://doi.org/10.1038/s41467-020-18466-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Y, Luo C, Rui T et al (2021) Autophagy inhibition facilitates wound closure partially dependent on the YAP/IL-33 signaling in a mouse model of skin wound healing. Faseb J 35:e21920. https://doi.org/10.1096/fj.202002623RRR

Article  CAS  PubMed  Google Scholar 

Gao Y, Zhang MY, Wang T et al (2018) IL-33/ST2L Signaling Provides Neuroprotection Through Inhibiting Autophagy, Endoplasmic Reticulum Stress, and Apoptosis in a Mouse Model of Traumatic Brain Injury. Front Cell Neurosci 12:95. https://doi.org/10.3389/fncel.2018.00095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Liu C, Zhu Y et al (2021) SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif 54:e13045. https://doi.org/10.1111/cpr.13045

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondo A, Shahpasand K, Mannix R et al (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523:431–436. https://doi.org/10.1038/nature14658

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Y, Wang T, Cheng Y et al (2023) Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med 199:97–112. https://doi.org/10.1016/j.freeradbiomed.2023.02.014

Article  CAS  PubMed  Google Scholar 

Cheng Y, Gao Y, Li J et al (2023) TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway. Free Radic Biol Med 194:184–198. https://doi.org/10.1016/j.freeradbiomed.2022.12.002

Article  CAS  PubMed  Google Scholar 

Ma WX, Yu TS, Fan YY et al (2011) Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 125:549–558. https://doi.org/10.1007/s00414-011-0567-4

Article  PubMed  Google Scholar 

Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414. https://doi.org/10.1007/s00414-008-0255-1

Article  CAS  PubMed  Google Scholar 

Gu S, Dai H, Zhao X, Gui C, Gui J (2020) AKT3 deficiency in M2 macrophages impairs cutaneous wound healing by disrupting tissue remodeling. Aging (Albany NY) 12:6928–6946. https://doi.org/10.18632/aging.103051

Article  CAS  PubMed  Google Scholar 

Foster DS, Januszyk M, Yost KE et al (2021) Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci USA 118:e2110025118. https://doi.org/10.1073/pnas.2110025118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shpichka A, Butnaru D, Bezrukov EA et al (2019) Skin tissue regeneration for burn injury. Stem Cell Res Ther 10:94. https://doi.org/10.1186/s13287-019-1203-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Q, Dai Q, Huang Z et al (2023) Microfat exerts an anti-fibrotic effect on human hypertrophic scar via fetuin-A/ETV4 axis. J Transl Med 21:231. https://doi.org/10.1186/s12967-023-04065-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Feng Q, Li Z, Bai X, Wu Y, Liu Y (2020) Evaluating the Effect of Integra Seeded with Adipose Tissue-Derived Stem Cells or Fibroblasts in Wound Healing. Curr Drug Deliv 17:629–635. https://doi.org/10.2174/1567201817666200512104004

Article  CAS  PubMed  Google Scholar 

Liew FY, Girard JP, Turnquist HR (2016) Interleukin-33 in health and disease. Nat Rev Immunol 16:676–689. https://doi.org/10.1038/nri.2016.95

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif