Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges

Barth, E., Stämmler, G., Speiser, B. & Schaper, J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell Cardiol. 24, 669–681 (1992).

Article  CAS  PubMed  Google Scholar 

Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S. & Stanley, W. C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207–258 (2010).

Article  CAS  PubMed  Google Scholar 

Ritterhoff, J. & Tian, R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc. Res. 113, 411–421 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keating, S. T. & El-Osta, A. Epigenetics and metabolism. Circ. Res. 116, 715–736 (2015).

Article  CAS  PubMed  Google Scholar 

Zhou, B. & Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest. 128, 3716–3726 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolwicz, S. C. Jr, Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

Article  CAS  PubMed  Google Scholar 

Shao, D. & Tian, R. Glucose transporters in cardiac metabolism and hypertrophy. Compr. Physiol. 6, 331–351 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Gibb, A. A. & Hill, B. G. Metabolic coordination of physiological and pathological cardiac remodeling. Circ. Res. 123, 107–128 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotter, D. G., Schugar, R. C. & Crawford, P. A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304, H1060–H1076 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho, K. L. et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc. Res. 117, 1178–1187 (2021).

Article  CAS  PubMed  Google Scholar 

Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizuno, Y. et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism 77, 65–72 (2017).

Article  CAS  PubMed  Google Scholar 

Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canto, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

Article  CAS  PubMed  Google Scholar 

Neubauer, S. The failing heart — an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

Article  PubMed  Google Scholar 

Ingwall, J. S. ATP and the Heart (Kluwer AcademicPublishers, 2002).

Qiu, Y., Pan, X., Chen, Y. & Xiao, J. Hallmarks of exercised heart. J. Mol. Cell Cardiol. 164, 126–135 (2022).

Article  CAS  PubMed  Google Scholar 

Abel, E. D. & Doenst, T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc. Res. 90, 234–242 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schannwell, C. M. et al. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology 97, 73–78 (2002).

Article  PubMed  Google Scholar 

Fulghum, K. L. et al. Metabolic signatures of pregnancy-induced cardiac growth. Am. J. Physiol. Heart Circ. Physiol. 323, H146–H164 (2022).

Article  CAS  PubMed  Google Scholar 

Menendez-Montes, I. et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev. Cell 39, 724–739 (2016).

Article  CAS  PubMed  Google Scholar 

Holness, M. J., Changani, K. K. & Sugden, M. C. Progressive suppression of muscle glucose utilization during pregnancy. Biochem. J. 280, 549–552 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugden, M. C. & Holness, M. J. Control of muscle pyruvate oxidation during late pregnancy. FEBS Lett. 321, 121–126 (1993).

Article  CAS  PubMed  Google Scholar 

Sugden, M. C., Changani, K. K., Bentley, J. & Holness, M. J. Cardiac glucose metabolism during pregnancy. Biochem. Soc. Trans. 20, 195S (1992).

Article  CAS  PubMed  Google Scholar 

Liu, L. X. et al. PDK4 inhibits cardiac pyruvate oxidation in late pregnancy. Circ. Res. 121, 1370–1378 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinto, J. et al. Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J. Proteome Res. 14, 1263–1274 (2015).

Article  CAS  PubMed  Google Scholar 

Gibb, A. A. et al. Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation 136, 2144–2157 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, F. H. et al. Cardiac basal autophagic activity and increased exercise capacity. J. Physiol. Sci. 68, 729–742 (2018).

Article  PubMed  Google Scholar 

White, F. C. et al. Adaptation of the left ventricle to exercise-induced hypertrophy. J. Appl. Physiol. 62, 1097–1110 (1987).

Article  CAS  PubMed  Google Scholar 

Riehle, C. et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol. Cell Biol. 34, 3450–3460 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Burelle, Y. et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 287, H1055–H1063 (2004).

Article  CAS  PubMed  Google Scholar 

Lai, L. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7, 1022–1031 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regitz-Zagrosek, V. & Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 97, 1–37 (2017).

Article  PubMed  Google Scholar 

Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

Article  PubMed  Google Scholar 

Walker, C. J., Schroeder, M. E., Aguado, B. A., Anseth, K. S. & Leinwand, L. A. Matters of the heart: cellular sex differences. J. Mol. Cell Cardiol. 160, 42–55 (2021).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif