Investigation of Cyclo-Z Therapeutic Effect on Insulin Pathway in Alzheimer's Rat Model: Biochemical and Electrophysiological Parameters

Song MK, Bischoff DS, Song AM, Uyemura K, Yamaguchi DT (2017) Metabolic relationship between diabetes and Alzheimer's Disease affected by Cyclo(His-Pro) plus zinc treatment. BBA Clin 7:41–54. https://doi.org/10.1016/j.bbacli.2016.09.003S2214-6474(16)30039-3

Article  PubMed  Google Scholar 

Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. https://doi.org/10.1038/416535a416535a]

Article  CAS  PubMed  Google Scholar 

Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. https://doi.org/10.1038/nm1782

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357. https://doi.org/10.1038/nature04533

Article  CAS  PubMed  Google Scholar 

Miyauchi T, Hagimoto H, Ishii M, Endo S, Tanaka K, Kajiwara S, Endo K, Kajiwara A et al (1994) Quantitative EEG in patients with presenile and senile dementia of the Alzheimer type. Acta Neurol Scand 89(1):56–64

Article  CAS  PubMed  Google Scholar 

Brunovsky M, Matousek M, Edman A, Cervena K, Krajca V (2003) Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology 48(1):19–26. https://doi.org/10.1159/000071824

Article  PubMed  Google Scholar 

de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. J Alzheimers Dis 7(1):45–61. https://doi.org/10.3233/jad-2005-7106

Article  PubMed  Google Scholar 

Schuh AF, Rieder CM, Rizzi L, Chaves M, Roriz-Cruz M (2011) Mechanisms of brain aging regulation by insulin: implications for neurodegeneration in late-onset Alzheimer's disease. ISRN Neurol 2011:306905. https://doi.org/10.5402/2011/306905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. https://doi.org/10.1038/nrm2101

Article  CAS  PubMed  Google Scholar 

Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases. IUBMB Life 59(4-5):332–345. https://doi.org/10.1080/15216540701283882

Article  CAS  PubMed  Google Scholar 

Ferreira ST, Klein WL (2011) The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol Learn Mem 96(4):529–543. https://doi.org/10.1016/j.nlm.2011.08.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22(10):RC221

Article  PubMed  PubMed Central  Google Scholar 

Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260. https://doi.org/10.1096/fj.06-7703com

Article  CAS  PubMed  Google Scholar 

De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ et al (2009) Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106(6):1971–1976. https://doi.org/10.1073/pnas.0809158106

Article  PubMed  PubMed Central  Google Scholar 

Lane RF, Shineman DW, Steele JW, Lee LB, Fillit HM (2012) Beyond amyloid: the future of therapeutics for Alzheimer's disease. Adv Pharmacol 64:213–271. https://doi.org/10.1016/B978-0-12-394816-8.00007-6

Article  CAS  PubMed  Google Scholar 

Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27(4):796–807. https://doi.org/10.1523/JNEUROSCI.3501-06.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escribano L, Simon AM, Gimeno E, Cuadrado-Tejedor M, Lopez de Maturana R, Garcia-Osta A, Ricobaraza A, Perez-Mediavilla A et al (2010) Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 35(7):1593–1604. https://doi.org/10.1038/npp.2010.32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P (2015) Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 48(4):891–917. https://doi.org/10.3233/JAD-150379

Article  CAS  PubMed  Google Scholar 

Pivovarova O, Hohn A, Grune T, Pfeiffer AF, Rudovich N (2016) Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med 48(8):614–624. https://doi.org/10.1080/07853890.2016.1197416

Article  CAS  PubMed  Google Scholar 

Morales-Corraliza J, Wong H, Mazzella MJ, Che S, Lee SH, Petkova E, Wagner JD, Hemby SE et al (2016) Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-beta Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci 36(15):4248–4258. https://doi.org/10.1523/JNEUROSCI.4640-14.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7(1):31–52. https://doi.org/10.1007/s11684-013-0251-9

Article  PubMed  Google Scholar 

Lifshitz V, Benromano T, Weiss R, Blanga-Kanfi S, Frenkel D (2013) Insulin-degrading enzyme deficiency accelerates cerebrovascular amyloidosis in an animal model. Brain Behav Immun 30:143–149. https://doi.org/10.1016/j.bbi.2012.12.003

Article  CAS  PubMed  Google Scholar 

Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Baertlein L, Boeve BF, Tangalos EG et al (2014) Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement 10(1):18–26. https://doi.org/10.1016/j.jalz.2013.01.001

Article  PubMed  Google Scholar 

Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, de Boer IH (2016) Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988-2014. JAMA 316(6):602–610. https://doi.org/10.1001/jama.2016.10924

Article  PubMed  PubMed Central  Google Scholar 

Watt NT, Whitehouse IJ, Hooper NM (2010) The role of zinc in Alzheimer's disease. Int J Alzheimers Dis 2011:971021. https://doi.org/10.4061/2011/971021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borza DB, Morgan WT (1998) Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals. J Biol Chem 273(10):5493–5499. https://doi.org/10.1074/jbc.273.10.5493

Article  CAS  PubMed  Google Scholar 

Rosenthal MJ, Hwang IK, Song MK (2001) Effects of arachidonic acid and cyclo (his-pro) on zinc transport across small intestine and muscle tissues. Life Sci 70(3):337–348. https://doi.org/10.1016/s0024-3205(01)01395-9

Article  CAS  PubMed  Google Scholar 

Maher PA, Schubert DR (2009) Metabolic links between diabetes and Alzheimer's disease. Expert Rev Neurother 9(5):617–630. https://doi.org/10.1586/ern.09.18

Article  CAS  PubMed  Google Scholar 

Banks WA, Kastin AJ, Jaspan JB (1992) Orally administered cyclo(His-Pro) reduces ethanol-induced narcosis in mice. Pharmacol Biochem Behav 43(3):939–941. https://doi.org/10.1016/0091-3057(92)90428-i

Article  CAS  PubMed  Google Scholar 

Banks WA, Kastin AJ, Akerstrom V, Jaspan JB (1993) Radioactively iodinated cyclo(His-Pro) crosses the blood-brain barrier and reverses ethanol-induced narcosis. Am J Physiol 264(5 Pt 1):E723–E729. https://doi.org/10.1152/ajpendo.1993.264.5.E723

Article  CAS  PubMed  Google Scholar 

Jaspan JB, Banks WA, Kastin AJ (1994) Study of passage of peptides across the blood-brain barrier: biological effects of cyclo(His-Pro) after intravenous and oral administration. Ann N Y Acad Sci 739:101–107. https://doi.org/10.1111/j.1749-6632.1994.tb19811.x

Article  CAS  PubMed  Google Scholar 

Song MK, Rosenthal MJ, Song AM, Uyemura K, Yang H, Ament ME, Yamaguchi DT, Cornford EM (2009) Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 158(2):442–450. https://doi.org/10.1111/j.1476-5381.2009.00201.x

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif