Cell death in the lateral geniculate nucleus, and its possible relationship with nicotinic receptors and sudden infant death syndrome (SIDS)

Skalicky SE (2016) The Lateral Geniculate Nucleus. In: Ocular and Visual Physiology. Springer Singapore, Singapore, pp. 201–206

Chapter  Google Scholar 

Casagrande VA, Sáry G, Royal D, Ruiz O (2005) On the impact of attention and motor planning on the lateral geniculate nucleus. Prog Brain Res 149:11–29. https://doi.org/10.1016/S0079-6123(05)49002-0

Article  PubMed  Google Scholar 

Martinovic J (2016) Magno-, Parvo-, Koniocellular Pathways. Springer New York, New York, NY, pp. 893–896

Google Scholar 

Kolmac C, Mitrofanis J (2000) Organization of brain stem afferents to the ventral lateral geniculate nucleus of rats. Vis Neurosci 17:313–318. https://doi.org/10.1017/S0952523800002108

Article  CAS  PubMed  Google Scholar 

Morin LP (2013) Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243:4–20. https://doi.org/10.1016/j.expneurol.2012.06.026

Article  PubMed  Google Scholar 

Morin LP (2015) A Path to Sleep Is through the Eye. eNeuro 2:ENEURO.0069-14.2015. https://doi.org/10.1523/ENEURO.0069-14.2015

Orlowska-Feuer P, Smyk MK, Palus-Chramiec K, Dyl K, Lewandowski MH (2019) Orexin A as a modulator of dorsal lateral geniculate neuronal activity: a comprehensive electrophysiological study on adult rats. Sci Rep 9:16729–16716. https://doi.org/10.1038/s41598-019-53012-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghodrati M, Khaligh-Razavi SM, Lehky SR (2017) Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 156:214–255. https://doi.org/10.1016/j.pneurobio.2017.06.002

Article  PubMed  Google Scholar 

Duncan JRBR (2018) Sudden Infant Death Syndrome: An Overview. University of Adelaide Press, Adelaide (AU)

Google Scholar 

Krous HFB JB, Byard RW, Rognum TO, Bajanowski T, Corey T, Cutz E, Hanzlick R, Keens TG et al (2004) Sudden Infant Death Syndrome and Unclassified Sudden Infant Deaths: A Definitional and Diagnostic Approach. Pediatrics 114:234–238

Article  Google Scholar 

Luijerink LLM, Vivekanandarajah A, Waters KA, Machaalani R (2020) The α7 and β2 nicotinic acetylcholine receptor subunits regulate apoptosis in the infant hippocampus, and in sudden infant death syndrome (SIDS). Apoptosis 25:574–589. https://doi.org/10.1007/s10495-020-01618-0

Article  CAS  PubMed  Google Scholar 

Machaalani R, Say M, Waters KA (2011) Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits alpha7 and beta2 in the sudden infant death syndrome (SIDS) brainstem. Toxicol Appl Pharmacol 257:396–404. https://doi.org/10.1016/j.taap.2011.09.023

Article  CAS  PubMed  Google Scholar 

Ambrose N, Rodriguez M, Waters KA, Machaalani R (2019) Cell death in the human infant central nervous system and in sudden infant death syndrome (SIDS). Apoptosis 24:46–61. https://doi.org/10.1007/s10495-018-1509-0

Article  PubMed  Google Scholar 

Ambrose N, Waters KA, Rodriguez ML, Bailey K, Machaalani R (2018) Neuronal apoptosis in the brainstem medulla of sudden unexpected death in infancy (SUDI), and the importance of standardized SUDI classification. Forensic Sci Med Pathol 14:42–56. https://doi.org/10.1007/s12024-018-9954-1

Article  CAS  PubMed  Google Scholar 

Machaalani R, Waters KA (2008) Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors. Brain 131:218–228. https://doi.org/10.1093/brain/awm290

Article  PubMed  Google Scholar 

Waters KA, Meehan B, Huang JQ, Gravel RA, Michaud J, Côté A (1999) Neuronal apoptosis in sudden infant death syndrome. Pediatr Res 45:166–172. https://doi.org/10.1203/00006450-199902000-00002

Article  CAS  PubMed  Google Scholar 

Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S (2016) Cholinergic system and cell proliferation. Chem Biol Interact 259:257–265. https://doi.org/10.1016/j.cbi.2016.04.014

Article  CAS  PubMed  Google Scholar 

Hejmadi MV, Dajas-Bailador F, Barns SM, Jones B, Wonnacott S (2003) Neuroprotection by nicotine against hypoxia-induced apoptosis in cortical cultures involves activation of multiple nicotinic acetylcholine receptor subtypes. Mol Cell Neurosci 24:779–786. https://doi.org/10.1016/S1044-7431(03)00244-6

Article  CAS  PubMed  Google Scholar 

Neary MT, Breckenridge RA (2013) Hypoxia at the heart of sudden infant death syndrome? Pediatr Res 74:375–379. https://doi.org/10.1038/pr.2013.122

Article  PubMed  PubMed Central  Google Scholar 

Machaalani R, Waters KA (2014) Neurochemical abnormalities in the brainstem of the Sudden Infant Death Syndrome (SIDS). Paediatr Respir Rev 15:293–300. https://doi.org/10.1016/j.prrv.2014.09.008

Article  PubMed  Google Scholar 

Harrington CT, Hafid NA, Waters KA (2022) Butyrylcholinesterase is a potential biomarker for Sudden Infant Death Syndrome. EBioMedicine 80:104041–104041. https://doi.org/10.1016/j.ebiom.2022.104041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aishah A, Hinton T, Waters KA, Machaalani R (2019) The α3 and α4 nicotinic acetylcholine receptor (nAChR) subunits in the brainstem medulla of sudden infant death syndrome (SIDS). Neurobiol Dis 125:23–30. https://doi.org/10.1016/j.nbd.2019.01.010

Article  CAS  PubMed  Google Scholar 

Vivekanandarajah A, Nelson ME, Kinney HC, Elliott AJ, Folkerth RD, Tran H, Cotton J, Jacobs P et al (2021) Nicotinic Receptors in the Brainstem Ascending Arousal System in SIDS With Analysis of Pre-natal Exposures to Maternal Smoking and Alcohol in High-Risk Populations of the Safe Passage Study. Front Neurol 12:636668. https://doi.org/10.3389/fneur.2021.636668

Article  PubMed  PubMed Central  Google Scholar 

Duncan JR, Randall LL, Belliveau RA, Trachtenberg FL, Randall B, Habbe D, Mandell F, Welty TK et al (2008) The effect of maternal smoking and drinking during pregnancy upon (3)H-nicotine receptor brainstem binding in infants dying of the sudden infant death syndrome: initial observations in a high risk population. Brain Pathology 18:21

Article  PubMed  Google Scholar 

Nachmanoff DB, Panigrahy A, Filiano JJ, Mandell F, Sleeper LA, Valdes-Dapena M, Krous HF, White WF et al (1998) Brainstem 3H-Nicotine Receptor Binding in the Sudden Infant Death Syndrome. J Neuropathol Exp Neurol 57:1018–1025. https://doi.org/10.1097/00005072-199811000-00004

Article  CAS  PubMed  Google Scholar 

Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396. https://doi.org/10.1016/j.pneurobio.2004.09.006

Article  CAS  PubMed  Google Scholar 

Francesco Mattia R, Tommaso P, Vittorio P, Lisa MM, Lamberto M, Jean-Pierre C (2001) Requirement of the Nicotinic Acetylcholine Receptor β2 Subunit for the Anatomical and Functional Development of the Visual System. PNAS 98:6453–6458. https://doi.org/10.1073/pnas.101120998

Article  Google Scholar 

Grubb MS, Rossi FM, Changeux JP, Thompson ID (2003) Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron (Cambridge, Mass) 40:1161–1172

Article  CAS  Google Scholar 

Gotti C, Moretti M, Zanardi A, Gaimarri A, Champtiaux N, Changeux J-P, Whiteaker P, Marks MJ et al (2005) Heterogeneity and selective targeting of neuronal nicotinic acetylcholine receptor (nAChR) subtypes expressed on retinal afferents of the superior colliculus and lateral geniculate nucleus: identification of a new native nAChR subtype alpha3beta2(alpha5 or beta3) enriched in retinocollicular afferents. Mol Pharmacol 68:1162–1171. https://doi.org/10.1124/mol.105.015925

Article  CAS  PubMed  Google Scholar 

Vivekanandarajah A, Chan YL, Chen H, Machaalani R (2016) Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem. Neurotoxicology (Park Forest South) 53:53–63. https://doi.org/10.1016/j.neuro.2015.12.017

Article  CAS  PubMed  Google Scholar 

Vivekanandarajah A, Waters KA, Machaalani R (2019) Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol 259:1–15. https://doi.org/10.1016/j.resp.2018.07.007

Article  CAS  PubMed  Google Scholar 

Vivekanandarajah A (2017) Cigarette smoke exposure and hypoxic effects on the expression of nicotinic acetylcholine receptors and apoptosis in the developing brain. PhD Doctorate. University of Sydney

Google Scholar 

Machaalani R, Waters KA (2003) Increased neuronal cell death after intermittent hypercapnic hypoxia in the developing piglet brainstem. Brain Res 985:127–134. https://doi.org/10.1016/S0006-8993(03)03003-8

Article  CAS  PubMed  Google Scholar 

Falck M, Osredkar D, Wood TR, Maes E, Flatebø T, Sabir H, Thoresen M (2018) Neonatal Systemic Inflammation Induces Inflammatory Reactions and Brain Apoptosis in a Pathogen-Specific Manner. Neonatology (Basel, Switzerland) 113:212–220. https://doi.org/10.1159/000481980

Article  CAS  Google Scholar 

Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30:144–157. https://doi.org/10.1016/j.jchemneu.2005.07.003

Article  CAS  PubMed  Google Scholar 

Machaalani R, Vivekanandarajah A, Despotovski V, Rodriguez M, Waters KA (2022) Morphology of the Dentate Gyrus in a Large Cohort of Sudden Infant Deaths—Interrelation Between Features but Not Diagnosis. J Neuropathol Exp Neurol 81:61–75. https://doi.org/10.1093/jnen/nlab119

Article  CAS  PubMed  Google Scholar 

Jensen LL, Banner J, Ulhøi BP, Byard RW (2014) β-Amyloid precursor protein staining of the brain in sudden infant and early childhood death. Neuropathol Appl Neurobiol 40:385–397. https://doi.org/10.1111/nan.12109

Article  CAS  PubMed  Google Scholar 

Spinelli J, Byard RW, Van Den Heuvel C, Collins-Praino LE (2018) Medullary Astrogliosis in Sudden Infant Death Syndrome Varies With Sleeping Environment: Evidence for Different Mechanisms of Death in Alone Versus Co-sleepers? J Child Neurol 33:269–274. https://doi.org/10.1177/0883073817750498

Article 

留言 (0)

沒有登入
gif